
User’s Guide
Version 1

For Use with Simulink®

Aerospace
Blockset

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Aerospace Blockset User’s Guide
 COPYRIGHT 2002-2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: July 2002 Online only New for Version 1 (Release 13)
July 2003 Online only Revised for Version 1.5 (Release 13SP1)
June 2004 Online only Revised for Version 1.6 (Release 14)

Notice

THE MATHWORKS PROGRAMS HAVE NOT BEEN TESTED OR CERTIFIED BY
ANY GOVERNMENT AGENCY OR INDUSTRY REGULATORY ORGANIZATION OR
ANY OTHER THIRD PARTY. THE PROGRAMS SHOULD NOT BE RELIED ON AS
THE SOLE BASIS TO SOLVE A PROBLEM WHOSE INCORRECT SOLUTION
COULD RESULT IN INJURY TO PERSON OR PROPERTY. THE PROGRAMS ARE
NOT DESIGNED NOR TESTED FOR A LEVEL OF RELIABILITY SUITABLE FOR
USE AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT OR OTHER
INFORMATION SYSTEMS OR HARDWARE, THE FAILURE OF WHICH CAN
REASONABLY BE EXPECTED TO CAUSE DEATH OR PERSONAL INJURY OR
PROPERTY OR ENVIRONMENTAL DAMAGE. LICENSEE AGREES THAT PRIOR
TO USING, INCORPORATING OR DISTRIBUTING THE PROGRAMS IN ANY
PRODUCT, IT WILL THOROUGHLY TEST THE PRODUCT AND THE
FUNCTIONALITY OF THE PROGRAMS IN THAT PRODUCT AND BE SOLELY
RESPONSIBLE FOR ANY PROBLEMS OR FAILURES.

i

Contents

1
Getting Started

What Is the Aerospace Blockset? . 1-2
What’s in This Chapter . 1-2

Required Products . 1-3

Opening the Aerospace Blockset in Simulink 1-4
Opening the Aerospace Blockset on Windows Platforms 1-4
Opening the Aerospace Blockset on UNIX Platforms 1-7

Running a Demo Model . 1-8
What This Demo Illustrates . 1-8
Opening the Model . 1-8
Running the Demo . 1-13
Modifying the Model . 1-16

2
Using the Aerospace Blockset

Introducing the Aerospace Blockset Libraries 2-2
Actuators Library . 2-2
Aerodynamics Library . 2-2
Animation Library . 2-2
Environment Library . 2-2
Equations of Motion Library . 2-3
Flight Parameters Library . 2-3
GNC Library . 2-4
Mass Properties Library . 2-4
Propulsion Library . 2-4
Utilities Library . 2-4

Creating Aerospace Models . 2-5

ii Contents

Building a Simple Actuator System . 2-6
Building the Model . 2-6
Running the Simulation . 2-15

3
Case Studies

Missile Guidance System . 3-2
Missile Guidance System Model . 3-2
Modeling Airframe Dynamics . 3-3
Modeling a Classical Three-Loop Autopilot 3-10
Modeling the Homing Guidance Loop . 3-12
Simulating the Missile Guidance System 3-18
Extending the Model . 3-20
References . 3-20

NASA HL-20 Lifting Body Airframe . 3-22
NASA HL-20 Lifting Body . 3-22
The HL-20 Airframe Model . 3-24
References . 3-35

Ideal Airspeed Correction . 3-36
Airspeed Correction Models . 3-36
Measuring Airspeed . 3-37
Modeling Airspeed Correction . 3-38
Simulating Airspeed Correction . 3-41

1903 Wright Flyer Model . 3-43
Wright Flyer Model . 3-44
Airframe Subsystem . 3-44
Environment Subsystem . 3-49
Pilot Subsystem . 3-51
Running the Simulation . 3-51
References . 3-53

iii

4
Block Reference

Blocks — Categorical List . 4-2
Actuators Library . 4-3
Aerodynamics Library . 4-3
Animation Library . 4-3
Environment Library . 4-3
Flight Parameters Library . 4-5
Equations of Motion Library . 4-5
GNC Library . 4-6
Mass Properties Library . 4-8
Propulsion Library . 4-8
Utilities Library . 4-8

Blocks — Alphabetical List . 4-11

A
Aerospace Units

Index

iv Contents

1

Getting Started

The Aerospace Blockset lets you model aerospace systems for use with Simulink® and MATLAB®.

What Is the Aerospace Blockset? (p. 1-2) Introduction to the Aerospace Blockset and the
Simulink environment

Required Products (p. 1-3) Products you might want to use with the Aerospace
Blockset and requirements for virtual reality
visualization

Opening the Aerospace Blockset in Simulink
(p. 1-4)

How to open the Aerospace Blockset in Simulink

Running a Demo Model (p. 1-8) Learn how to execute an aerospace model in
Simulink, examine the results, and modify the
model settings and parameters

1 Getting Started

1-2

What Is the Aerospace Blockset?
The Aerospace Blockset brings the full power of Simulink to aerospace system
design, integration, and simulation by providing key aerospace subsystems
and components in the adaptable Simulink block format. From environmental
models to equations of motion, from gain scheduling to animation, the blockset
gives you the core components to assemble a broad range of large aerospace
system architectures rapidly and efficiently.

You can use the Aerospace Blockset and Simulink to develop your aerospace
system concepts and to efficiently revise and test your models throughout the
life cycle of your design. Use the Aerospace Blockset together with Real-Time
Workshop® to automatically generate code for real-time execution in rapid
prototyping and for hardware-in-the-loop systems.

What’s in This Chapter
This chapter introduces you to the capabilities of the Aerospace Blockset and
its relationship to other MathWorks products:

• “Required Products” on page 1-3

• “Opening the Aerospace Blockset in Simulink” on page 1-4

Required Products

1-3

Required Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Aerospace Blockset. In particular, the
Aerospace Blockset requires these products:

• MATLAB 7

• Control System Toolbox 5.2

• Simulink 6

Virtual Reality-Based Visualization
The optional virtual reality-based visualization blocks in the Aerospace
Blockset require the Virtual Reality Toolbox Version 4.0. The Virtual Reality
Toolbox includes a default viewer, which works on all platforms.

You can also install the blaxxun Contact plug-in viewer, Version 4.4, for Web
browsers. This plug-in is included with the Virtual Reality Toolbox and works
on Windows platforms only. It requires Java-enabled Microsoft Internet
Explorer 4.0, Netscape Navigator 4.0, or a later version Web browser.

For more information about any of these products

• Consult the online documentation for that product

• Visit the MathWorks Web site, at www.mathworks.com; see the “Products”
section

http://www.mathworks.com

1 Getting Started

1-4

Opening the Aerospace Blockset in Simulink
To get started with the Aerospace Blockset, you need to use Simulink. All the
blocks in the Aerospace Blockset are designed for use together with the blocks
in the Simulink libraries. This section describes how to open the Aerospace
Blockset on Windows and on UNIX platforms:

“Opening the Aerospace Blockset on Windows Platforms” on page 1-4

“Opening the Aerospace Blockset on UNIX Platforms” on page 1-7

Opening the Aerospace Blockset on Windows
Platforms
You can open the Aerospace Blockset from the Simulink Library Browser.

Opening the Simulink Library Browser
To start Simulink, click the icon in the MATLAB toolbar, or enter

simulink

at the command line.

The Simulink Libraries
The libraries in the Simulink Library Browser contain all the basic elements
you need to construct a model. Look here for basic math operations, switches,
connectors, simulation control elements, and other items that do not have a
specific aerospace orientation.

Opening the Aerospace Blockset
On Windows platforms, the Simulink Library Browser opens when you start
Simulink. The left pane contains a list of all the blocksets that you currently
have installed.

Opening the Aerospace Blockset in Simulink

1-5

The first item in the list is the Simulink blockset itself, which is already
expanded to show the available Simulink libraries. Click the symbol to the
left of any blockset name to expand the hierarchical list and display that
blockset’s libraries within the browser.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

1 Getting Started

1-6

Double-click any library in the window to display its contents. The following
figure shows the aerolib library window.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — Categorical List” on page 4-2.

See the Simulink documentation for a complete description of the Simulink
Library Browser.

Opening the Aerospace Blockset in Simulink

1-7

Opening the Aerospace Blockset on UNIX Platforms
On UNIX platforms, the Simulink Library window opens when you start
Simulink. To open the Aerospace Blockset, double-click the Aerospace
Blockset icon to open the Aerospace Blockset.

To open the Aerospace Blockset window from the MATLAB command line,
enter

aerolib

Double-click any library in the window to display its contents. The following
figure shows the aerolib library window.

For a complete list of all the blocks in the Aerospace Blockset by library, see
“Blocks — Categorical List” on page 4-2.

1 Getting Started

1-8

Running a Demo Model
This demo model uses some of the blocks in the Aerospace Blockset to simulate
a three-degrees-of-freedom missile guidance system. You will see how the demo
implements the Aerospace Blockset in conjunction with other Simulink blocks.

The demo model simulates a missile guidance system with a target acquisition
and interception subsystem. The model implements a nonlinear representation
of the rigid body dynamics of the missile airframe, including aerodynamic
forces and moments. In addition, the missile autopilot was developed using the
trimmed and linearized missile airframe, and the missile homing guidance
systems regulates missile acceleration and measures the distance between the
missile and the target.

Note For more information on the missile guidance model, see Chapter 3,
“Case Studies.”

What This Demo Illustrates
The missile guidance demo illustrates the following features of the Aerospace
Blockset:

• Representing bodies and degrees of freedom with the Equations of Motion
library blocks

• Using the Aerospace Blockset with other Simulink blocks

• Using the Aerospace Blockset with other Mathworks products like Stateflow

• Feeding in and feeding out Simulink signals to and from Aerospace Blockset
blocks with Actuator and Sensor blocks

• Encapsulating groups of blocks into subsystems

• Visualizing and animating an aircraft with the Animation library blocks

Opening the Model
To open a Aerospace Blockset demo from the Help browser, open the Demos
library in the Help browser by clicking the Demos tab in the Help Navigator
pane on the left. Locate the demo in the list and open it. You can also open
demos by entering the demo name at the command line.

Running a Demo Model

1-9

Here is the general procedure for starting Aerospace Blockset demos from the
Start button of the MATLAB desktop:

1 Click the Start button.

2 Select Blocksets, then Aerospace, and then Demos.

This opens the MATLAB Help browser with Demos selected in the left Help
Navigator pane.

3 Double-click Three Degrees of Freedom Guided Missile from the list of
models in the list.

Alternatively, you can open the same MATLAB Demos window by entering
demos at the MATLAB command line.

To get started quickly with this specific demo, you can enter aeroblk_guidance
at the MATLAB command line.

The Block Diagram Model
The block diagram model opens in a model window.

At the same time, a Stateflow® statechart appears that shows a chart for the
guidance control processor.

1 Getting Started

1-10

What the Model Contains
Note some features of the model:

• The Airframe & Autopilot subsystem implements the ISA Atmosphere Model
block, the Incidence & Airspeed block, and the 3DoF (Body Axes) block, along
with other Simulink blocks.

The airframe model is a nonlinear representation of rigid body dynamics.
The aerodynamic forces and moments acting on the missile body are
generated from coefficients that are nonlinear functions of both incidence
and Mach number.

Running a Demo Model

1-11

• The model implements the missile autopilot as a classical three-loop design
using measurements from an accelerometer located ahead of the missile’s
center of gravity and from a rate gyro to provide additional damping.

1 Getting Started

1-12

• The model implements the homing guidance system as two subsystems: the
Guidance subsystem and the Seeker/Tracker subsystem.

- The Guidance subsystem uses a Stateflow statechart to control the tracker
directly by sending demands to the seeker gimbals.

Running a Demo Model

1-13

- The Seeker/Tracker subsystem consists of Simulink blocks that control the
seeker gimbals to keep the seeker dish aligned with the target and provide
the guidance law with an estimate of the sight line rate.

Running the Demo
Running a demo lets you observe the model simulation in real time. After you
run the demo, you can examine the resulting data in plots, graphs, and other
visualization tools. To run the missile guidance model, follow these steps:

1 Open the aeroblk_guidance demo.

2 From the Simulation menu, select Start. In Microsoft Windows, you can
also click the Start button in the model window toolbar.

The simulation proceeds until the missile intercepts the target, which takes
approximately 3 seconds. Once the interception has occurred, four scope
figures open to display the following data:

1 Getting Started

1-14

a A three-dimensional animation of the missile and target interception
course

Running a Demo Model

1-15

b Plots that measure flight parameters over time, including Mach number,
fin demand, acceleration, and degree of incidence

1 Getting Started

1-16

c A plot that measures gimbal versus true look angles

d A plot that measures missile and target trajectories

Modifying the Model
You can adjust model settings and examine the effects on simulation
performance. Here are two modifications that you can try. The first
modification adjusts the dynamic pressure for the simulation. The second
modification changes the camera point of view for the interception animation.

Running a Demo Model

1-17

Adjusting the Thrust
Like any Simulink model, you can adjust aerospace model parameters from the
MATLAB workspace. To demonstrate this functionality, you will change the
Thrust variable in the model and evaluate the results in the simulation. Follow
these steps:

1 Open the aeroblk_guidance model in Simulink.

2 In the MATLAB desktop, find the Thrust variable in the Workspace panel.

The Thrust variable is defined in the aeroblk_guid_dat.m file, which the
aeroblk_guidance model uses to populate parameter and variable values.
By default, the Thrust variable should be set to 10000.

3 Single-click the Thrust variable to select it. To edit the value, right-click on
the Thrust variable and select Edit Value. Change the value to 5000.

Before you run the demo again, note the Miss Distance display in the
aeroblk_guidance window.

1 Getting Started

1-18

Start the demo, and after it finishes, note the miss distance display again. The
miss distance should become greater than the original distance. You can
experiment with different values in the Thrust variable and assess the effects
on missile accuracy.

Changing the Animation Point of View
By default, the aeroblk_guidance model animation view is Fly Alongside,
which means the view tracks with the missile’s flight path. You can easily
change the animation point of view by adjusting a parameter of the 3DoF
Animation block:

1 Open the aeroblk_guidance model, and double-click the 3DoF Animation
block. The Block Parameters dialog box appears.

Miss
Distance
display

Running a Demo Model

1-19

2 Change the view to Cockpit.

3 Click the OK button.

Run the demo again, and watch the animation. Instead of moving alongside the
missile’s flight path, the animation point of view lies in the cockpit. Upon target
interception, the screen fills with blue, the target’s color.

Enter view

1 Getting Started

1-20

You can experiment with different views to watch the animation from different
perspectives.

2

Using the Aerospace
Blockset

Constructing a simple model with the Aerospace Blockset is easy to learn if you already know how to
make Simulink models. If you are not already familiar with Simulink, please see the Simulink
documentation.

Introducing the Aerospace Blockset Libraries
(p. 2-2)

Overview of the Aerospace Blockset libraries

Creating Aerospace Models (p. 2-5) Summary of the most important steps for building
models with the Aerospace Blockset

Building a Simple Actuator System (p. 2-6) A tutorial to model and simulate a simple actuator
system

2 Using the Aerospace Blockset

2-2

Introducing the Aerospace Blockset Libraries
The Aerospace Blockset is organized into hierarchical libraries of closely
related blocks. The following sections summarize the blocks in each library.
You can view the general Aerospace Blockset reference in Chapter 4, “Block
Reference.”

Note For more information on viewing the Aerospace Blockset, see Chapter
1, “Getting Started.”

Actuators Library
The Actuators library provides blocks for representing linear and nonlinear
actuators with saturation and rate limits.

Aerodynamics Library
The Aerodynamics library provides the Aerodynamic Forces and Moments
block using the aerodynamic coefficients, dynamic pressure, center of gravity
and center of pressure.

Animation Library
The Animation library provides the 3DoF Animation block and the 6DoF
Animation block. Using the animation blocks, you can visualize flight paths
and trajectories.

Environment Library
The Environment library provides blocks that simulate various aspects of an
aircraft environment, such as atmosphere conditions, gravity, magnetic fields,
and wind. The Environment library contains the Atmosphere, Gravity, and
Wind sublibraries.

Atmosphere Sublibrary
The Atmosphere sublibrary provides general atmospheric models, such as ISA
and COESA, and other blocks, including nonstandard day simulations, lapse
rate atmosphere, and pressure altitude.

Introducing the Aerospace Blockset Libraries

2-3

Gravity Sublibrary
The Gravity sublibrary provides blocks that calculate the gravity and magnetic
fields for any point on the Earth.

Wind Sublibrary
The Wind sublibrary provides blocks for wind-related simulations, including
turbulence, gust, shear, and horizontal wind.

Equations of Motion Library
The Equations of Motion library provides blocks for implementing the
equations of motion to determine body position, velocity, attitude, and related
values.The Equations of Motion library contains the 3DoF and 6DoF
sublibraries.

3DoF Sublibrary
The 3DoF sublibrary provides blocks for implementing
three-degrees-of-freedom equations of motion in your simulations, including
custom variable mass models.

6DoF Sublibrary
The 6DoF sublibrary provides blocks for implementing six-degrees-of-freedom
equations of motion in your simulations using Euler angles and quaternion
representations.

Flight Parameters Library
The Flight Parameters library provides blocks for various parameters,
including ideal airspeed correction, mach number, and dynamic pressure. The
Flight Parameters library contains the Control and Guidance sublibraries.

Control Sublibrary
The Control sublibrary provides blocks for simulating various control types,
such as one-dimensional, two-dimensional, and three-dimensional models.

Guidance Sublibrary
The Guidance sublibrary provides the Calculate Range block, which computes
the range between two vehicles.

2 Using the Aerospace Blockset

2-4

GNC Library
The GNC library provides blocks for creating control and guidance systems,
including various controller models.

Mass Properties Library
The Mass Properties library provides blocks for simulating the center of
gravity and inertia tensors.

Propulsion Library
The Propulsion library provides the Turbofan Engine System block, which
simulates an engine system and controller.

Utilities Library
The Utilities library contains miscellaneous blocks useful in building models.
The library contains the Axes Transformations, Math Operations, and Unit
Conversions sublibraries.

Axes Transformations Sublibrary
The Axes Transformations sublibrary provides blocks for transforming axes of
coordinate systems to different types, such as Euler angles to quaternions and
vice versa.

Math Operations Sublibrary
The Math Operations sublibrary provides blocks for common mathematical
and matrix operations, including sine and cosine generation and various 3-by-3
matrix operations.

Unit Conversions Sublibrary
The Unit Conversions sublibrary provides blocks for converting common
measurement units from one system to another, such as converting
acceleration from feet per second to meter per second and vice versa.

Creating Aerospace Models

2-5

Creating Aerospace Models
Regardless of its complexity, you use the same procedure for creating an
aerospace model as you would for creating any other Simulink model. Here are
the basic steps:

1 Select and position the blocks. You must first select the blocks that you need
to build your model, and then position the blocks in the model window. For
the majority of Simulink models, you will select one block from each of the
following categories:

a Source blocks generate or import signals into the model, such as a sine
wave, a clock, or limited-band white noise.

b Simulation blocks can consist of almost any type of block that performs
an action in the simulation. Usually, a simulation block represents a part
of the model and design functionality to be simulated, such as an actuator
block, a mathematical operation, a block from the Aerospace Blockset,
and so on.

c Signal Routing blocks route signals from one point in a model to another.
If you have two or more signals in your block, you will likely use a signal
routing block in your models, including Mux blocks.

d Sink blocks display or write model output. To see the results of the
simulation, you must use a Sink block.

2 Configure the blocks. Most blocks feature configuration options that let you
customize block functionality to specific simulation parameters. For
example, the ISA Atmosphere Model block provides configuration options
for setting the height of the troposphere, tropopause, and air density at sea
level.

3 Connect the blocks. To create signal pathways between blocks, you connect
the blocks to each other. You can do this manually by clicking and dragging
or you can connect blocks automatically. For more information on connecting
blocks, see the Simulink documentation.

4 Encapsulate subsystems. Systems made with the Aerospace Blockset can
function as subsystems of larger, more complex models, like subsystems in
normal Simulink models. For more information on subsystems, see the
Simulink documentation.

2 Using the Aerospace Blockset

2-6

Building a Simple Actuator System
In this tutorial, you drag, drop, and configure a few basic blocks to drive,
simulate, and measure an actuator. The tutorial guides you through these
aspects of model building:

• “Building the Model” on page 2-6

• “Running the Simulation” on page 2-15

At the end of the tutorial, you will have constructed a simple actuator model
that measures the actuator’s position in relation to a sine wave.

Building the Model
Simulink is a software environment for modeling, simulating, and analyzing
dynamic systems. Try building a simple model that drives an actuator with a
sine wave and displays the actuator’s position superimposed on the sine wave.

Note If you prefer to open the complete model shown below instead of
building it, enter aeroblktutorial at the MATLAB command line.

The following sections explain how to build a model on Windows and UNIX
platforms:

• “Creating a Model on Windows Platforms” on page 2-7

• “Creating a Model on UNIX Platforms” on page 2-11

Building a Simple Actuator System

2-7

Creating a Model on Windows Platforms

1 Start Simulink.

Click the button in the MATLAB toolbar or enter simulink at the
MATLAB command line. The Simulink Library Browser appears.

2 Open a new model.

Select New -> Model from the File menu in the Library Browser. A new
model window appears on your screen.

2 Using the Aerospace Blockset

2-8

3 Add a Sine Wave block to the model.

a Click Sources in the Library Browser to view the blocks in the Simulink
Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Click the symbol next to Aerospace Blockset in the Library Browser
to expand the hierarchical list of the aerospace blocks.

b In the expanded list, click Actuators to view the blocks in the Actuator
library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Click Signal Routing in the Library Browser to view the blocks in the
Simulink Signals & Systems library.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Click Sinks in the Library Browser to view the blocks in the Simulink
Sinks library.

b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

Building a Simple Actuator System

2-9

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

For this example, configure the block to generate a 10 rad/sec sine wave
by entering 10 for the Frequency parameter. The sinusoid has the
default amplitude of 1 and phase of 0 specified by the Amplitude and
Phase offset parameters.

b Click OK.

2 Using the Aerospace Blockset

2-10

c Double-click the Second Order Linear Actuator block.

In this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

Building a Simple Actuator System

2-11

Creating a Model on UNIX Platforms
For this section, the screenshots were taken from an X Windows client in
Microsoft Windows:

1 Start Simulink.

Enter simulink at the MATLAB command line. The Simulink Library
window appears.

2 Open a new model.

Select New -> Model from the File menu in the Simulink Library window.
A new model window appears on your screen.

3 Add a Sine Wave block to the model.

2 Using the Aerospace Blockset

2-12

a Double-click Sources in the Simulink Library window to view the blocks
in the Simulink Sources library.

b Drag the Sine Wave block from the Sources library into the new model
window.

4 Add a Second Order Linear Actuator block to the model.

a Double-click Aerospace Blockset in the Simulink Library browser. This
opens the Aerospace Blockset block libraries.

b In the Aerospace Blockset block libraries, click Actuators to view the
blocks in the Actuator library.

c Drag the Second Order Linear Actuator block into the model window.

5 Add a Mux block to the model.

a Double-click Signal Routing in the Simulink Library to view the Signal
Routing blocks.

b Drag the Mux block from the Signal Routing library into the model
window.

6 Add a Scope block to the model.

a Double-click Sinks in the Simulink Library window to view the blocks in
the Simulink Sinks library.

b Drag the Scope block from the Sinks library into the model window.

7 Resize the Mux block in the model.

a Click the Mux block to select the block.

b Hold down the mouse button and drag a corner of the Mux block to
change the size of the block.

8 Connect the blocks.

a Position the pointer near the output port of the Sine Wave block. Hold
down the mouse button and drag the line that appears until it touches the
input port of the Second Order Linear Actuator block. Release the mouse
button.

b Using the same technique, connect the output of the Second Order Linear
Actuator block to the second input port of the Mux block.

Building a Simple Actuator System

2-13

c Using the same technique, connect the output of the Mux block to the
input port of the Scope block.

d Position the pointer near the first input port of the Mux block. Hold down
the mouse button and drag the line that appears over the line from the
output port of the Sine Wave block until double crosshairs appear.
Release the mouse button. The lines are connected when a knot is present
at their intersection.

9 Set the block parameters.

a Double-click the Sine Wave block. The dialog box that appears allows you
to set the block’s parameters.

In this example, configure the block to generate a 10 rad/sec sine wave by
entering 10 for the Frequency parameter. The sinusoid has the default
amplitude of 1 and phase of 0 specified by the Amplitude and Phase
offset parameters.

b Click OK.

2 Using the Aerospace Blockset

2-14

c Double-click the Second Order Linear Actuator block.

For this example, the actuator has the default natural frequency of 150
rad/sec, a damping ratio of 0.7, and an initial position of 0 radians
specified by the Natural frequency, Damping ratio, and Initial
position parameters.

d Click OK.

Building a Simple Actuator System

2-15

Running the Simulation
You can now run the simulation block diagram that you built to see how the
system behaves in time:

1 Double-click the Scope block if the Scope window is not already open on your
screen. The Scope window appears.

2 Select Start from the Simulation menu in the block diagram window. The
signal containing the 10 rad/s sinusoid and the signal containing the
actuator position are plotted on the scope.

3 Adjust the Scope block’s display. While the simulation is running, right-click
the y-axis of the scope and select Autoscale. The vertical range of the scope
is adjusted to better fit the signal.

4 Vary the Sine Wave block parameters.

a While the simulation is running, double-click the Sine Wave block to open
it.

b Change the frequency of the sinusoid. Try entering 1 or 20 in the
Frequency field. Click Apply after entering each new value and observe
the changes on the scope.

5 Select Stop from the Simulation menu to stop the simulation.

Many parameters cannot be changed while a simulation is running. This is
usually the case for parameters that directly or indirectly alter a signal’s

2 Using the Aerospace Blockset

2-16

dimensions or sample rate. There are some parameters, however, like the Sine
Wave Frequency parameter, that you can tune without terminating the
simulation.

Running a Simulation from an M-File
You can also modify and run a Simulink simulation from within a MATLAB
M-file. By doing this, you can automate the variation of model parameters to
explore a large number of simulation conditions rapidly and efficiently. For
information on how to do this, see “Running a Simulation Programmatically”
in the Simulink documentation.

3

Case Studies

Missile Guidance System (p. 3-2) Design and simulate a three-degrees-of-freedom missile
guidance system using Simulink and the Aerospace Blockset

NASA HL-20 Lifting Body Airframe
(p. 3-22)

Model the airframe of a NASA HL-20 lifting body, a low-cost
complement to the Space Shuttle orbiter, using Simulink and
the Aerospace Blockset

Ideal Airspeed Correction (p. 3-36) Calculate indicated and true airspeed using Simulink and the
Aerospace Blockset

1903 Wright Flyer Model (p. 3-43) Model the airframe, environment, and pilot of the first
aircraft, the Wright Flyer

3 Case Studies

3-2

Missile Guidance System
This section explains how to design and simulate a three-degrees-of-freedom
missile guidance system using Simulink and the Aerospace Blockset:

• “Missile Guidance System Model” on page 3-2 shows how to open the model
used in this case study.

• “Modeling Airframe Dynamics” on page 3-3 describes how the atmospheric
equations and the equations of motion in the missile airframe are
implemented.

• “Modeling a Classical Three-Loop Autopilot” on page 3-10 describes how to
design the missile autopilot to control the acceleration normal to the missile
body.

• “Modeling the Homing Guidance Loop” on page 3-12 describes how to design
the homing guidance loop to track the target and generate the demands that
are passed to the autopilot.

• “Simulating the Missile Guidance System” on page 3-18 describes how to
simulate the model and evaluate system performance.

• “Extending the Model” on page 3-20 examines a full six-degrees-of-freedom
equations of motion representation.

• “References” on page 3-20 provides a selected bibliography.

Missile Guidance System Model
To view the missile guidance system model, enter the following at the
MATLAB command line.

aeroblk_guidance

The missile airframe and autopilot are contained in the Airframe & Autopilot
subsystem. The Seeker/Tracker and Guidance subsystems model the homing
guidance loop.

Missile Guidance System

3-3

Modeling Airframe Dynamics
The model of the missile airframe in this demo uses advanced control methods
applied to missile autopilot design [1], [2], [3]. The model represents a
tail-controlled missile traveling between Mach 2 and Mach 4, at altitudes
ranging between 3050 meters (10000 feet) and 18290 meters (60000 feet), and
with typical angles of attack in the range of ±20 degrees.

3 Case Studies

3-4

Missile Airframe Model

The core element of the model is a nonlinear representation of the rigid body
dynamics of the airframe. The aerodynamic forces and moments acting on the
missile body are generated from coefficients that are nonlinear functions of
both incidence and Mach number. You can model these dynamics easily in the
Simulink environment using the Aerospace Blockset.

The model of the missile airframe consists of two main components:

• “ISA Atmosphere Model Block” on page 3-5 calculates the change in
atmospheric conditions with changing altitude.

• “Aerodynamics & Equations of Motion Subsystem” on page 3-8 calculates the
magnitude of the forces and moments acting on the missile body and
integrates the equations of motion.

Missile Guidance System

3-5

To view the missile airframe model, enter the following in the MATLAB
Command Window.

aeroblk_guidance_airframe

ISA Atmosphere Model Block
The ISA Atmosphere Model block is an approximation of the International
Standard Atmosphere (ISA). This block consists of two sets of equations. One
set of equations models is used for the troposphere region, and the other set of
equations models is used for the lower stratosphere region. The troposphere
region lies between sea level and 11000 meters (36089 feet). The ISA model
assumes a linear temperature drop with increasing altitude in the troposphere
region. The lower stratosphere region ranges between 11000 meters (36089
feet) and 20000 meters (65617 feet). The ISA models the stratosphere by
assuming that the temperature remains constant in the lower stratosphere

3 Case Studies

3-6

region. The figure below displays how the speed of sound and the air density
vary with altitude.

The following equations define the troposphere.

T To Lh–=

ρ ρo
T
To
------ 
 

g
LR
-------- 1–

⋅=

P Po
T
To
------ 
 

g
LR

⋅=

a γRT=

Missile Guidance System

3-7

The following equations define the lower stratosphere.

The symbols are defined as follows.

You can look under the mask of the ISA Atmosphere Model block to see how
these equations are implemented in the model.

T0 Absolute temperature at mean sea level in degrees Kelvin

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Absolute temperature at altitude h in degrees Kelvin

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Lapse rate in degrees Kelvin/m

Characteristic gas constant J/kg-degrees Kelvin

Specific heat ratio

Acceleration due to gravity in m/s2

T 216.7=
oK

ρ ρo
T
To
------ 
 

g
LR

e

g
RT
--------- 11000 h–()

⋅ ⋅=

P Po
T
To
------ 
 

g
LR
-------- 1–

e⋅ ⋅
g

RT
--------- 11000 h–()

=

a γRT=

ρ0

P0

h

T

P

a

L

R

γ

g

3 Case Studies

3-8

Aerodynamics & Equations of Motion Subsystem
The Aerodynamics & Equations of Motion subsystem generates the forces and
moments applied to the missile in the body axes and integrates the equations
of motion that define the linear and angular motion of the airframe. The
aerodynamic coefficients are stored in data sets, and, during the simulation,
the value at the current operating condition is determined by interpolation
using the Interpolation (n-D) using PreLook-Up blocks.

These are the three-degrees-of-freedom body axis equations of motion, which
are defined in the Equations of Motion (Body Axes) block.

U· T Fx+() m⁄ qW– g θsin–=

W· Fz m⁄ qU g θcos+ +=

q· M Iyy⁄=

θ· q=

Missile Guidance System

3-9

These are the aerodynamic forces and moments equations, which are defined
in the Aerodynamics subsystem.

These are the stability axes variables, which are calculated in the Incidence &
Airspeed block.

The symbols are defined as follows.

Attitude in radians

Body rotation rate in rad/s

Missile mass in kg

Acceleration due to gravity in m/s2

Moment of inertia about the y axis in kg-m2

Acceleration in the Z body axis in m/s2

Change in body rotation rate in rad/s2

Thrust in the X body axis in N

Air density in kg/m3

Reference area in m2

Coefficient of aerodynamic force in the X axis

Coefficient of aerodynamic force in the Z axis

Coefficient of aerodynamic moment about the Y axis

Fx qSrefCx Mach α,()=

Fz qSrefCz Mach α η,(,)=

M qSrefdrefCM Mach α η q, , ,()=

q 1
2
---ρV2

=

V U2 W2
+=

α W U⁄()atan=

θ

q

M

g

Iyy

W·

q·

T

ρ

Sref

CX

CZ

CM

3 Case Studies

3-10

Modeling a Classical Three-Loop Autopilot
The missile autopilot controls the acceleration normal to the missile body. In
this case study, the autopilot structure is a three-loop design using
measurements from an accelerometer located ahead of the missile’s center of
gravity and from a rate gyro to provide additional damping. The following
figure shows the classical configuration of an autopilot. The controller gains
are scheduled on incidence and Mach number and tuned for robust
performance at an altitude of 3050 meters (10000 feet).

Reference length in meters

Fin angle in radians

Aerodynamic force in the X body axis in N

Aerodynamic force in the Z body axis in N

Aerodynamic moment along the Y body axis

Dynamic pressure in Pa

Airspeed in m/s

Incidence in radians

Velocity in the X body axis in m/s

Velocity in the Z body axis in m/s

dref

η

FX

FZ

M

q

V

α

U

W

Missile Guidance System

3-11

Designing an autopilot entails the following:

• “Trimming and Linearizing an Airframe Model” on page 3-11 explains how
to model the airframe pitch dynamics for a number of trimmed flight
conditions.

• “Autopilot Design” on page 3-12 summarizes the autopilot design process.

Trimming and Linearizing an Airframe Model
Designing the autopilot using classical design techniques requires linear
models of the airframe pitch dynamics for a number of trimmed flight
conditions. MATLAB can determine the trim conditions and derive linear
state-space models directly from the nonlinear Simulink model. This saves
time and helps to validate the model. The functions provided by the Control
System Toolbox allow you to visualize the behavior of the airframe in terms of
open-loop frequency (or time) responses.

The airframe trim demo shows how to trim and linearize an airframe model.
To run this demo, enter the following in the MATLAB Command Window.

aeroblk_lin_aero

The output from this demo is a Bode diagram in the Control System Toolbox
viewer.

3 Case Studies

3-12

Autopilot Design
Autopilot design can begin after the missile airframe has been linearized at a
number of flight conditions. Typically, autopilot designs are carried out on a
number of linear airframe models derived at varying flight conditions across
the expected flight envelope. Implementing the autopilot in the nonlinear
model involves storing the autopilot gains in two-dimensional lookup tables
and incorporating an antiwindup gain to prevent integrator windup when the
fin demands exceed the maximum limits. Testing the autopilot in the nonlinear
Simulink model is the best way to demonstrate satisfactory performance in the
presence of nonlinearities, such as actuator fin and rate limits and dynamically
changing gains.

The Autopilot subsystem is an implementation of the classical three-loop
autopilot design within Simulink.

Modeling the Homing Guidance Loop
The complete homing guidance loop consists of these two subsystems:

• The “Guidance Subsystem” on page 3-13 generates the normal acceleration
demands that are passed to the autopilot.

• The “Seeker/Tracker Subsystem” on page 3-16 returns measurements of the
relative motion between the missile and the target.

Missile Guidance System

3-13

The autopilot is now part of an inner loop within the overall homing guidance
system. Consult Reference [4] for information on different types of guidance
systems and on the analysis techniques that are used to quantify guidance loop
performance.

Guidance Subsystem
Initially, the Guidance subsystem searches to locate the target’s position and
then generates demands during closed-loop tracking. A Stateflow model
controls the transfer between the different modes of these operations.
Stateflow is the ideal tool for rapidly defining all the operational modes, both
during normal operation and during unusual situations.

3 Case Studies

3-14

Guidance Processor Statechart. Mode switching is triggered by events generated in
Simulink or in the Stateflow chart. The variable Mode is passed out to Simulink
and is used to control the Simulink model’s behavior and to determine the
response of the Simulink model. For example, the Guidance Processor state
chart, which is part of the Guidance subsystem, shows how the system reacts
in response to either losing the target lock or failing to acquire the target’s
position during the target search.

During the target search, this Stateflow state chart controls the tracker
directly by sending demands to the seeker gimbals (Sigma_d). Target
acquisition is flagged by the tracker once the target lies within the beam width
of the seeker (Acquire) and, after a short delay, closed loop guidance begins.

Missile Guidance System

3-15

Proportional Navigation Guidance Measurements. Once the seeker has acquired the
target, a Proportional Navigation Guidance (PNG) law guides the missile until
impact. This form of guidance law is the most basic, used in guided missiles
since the 1950s, and can be applied to radar-, infrared-, or television-guided
missiles. The navigation law requires measurements of the closing velocity
between the missile and target, which for a radar-guided missile can be
obtained with a Doppler tracking device, and an estimate for the rate of change
of the inertial sight line angle.

Proportional Navigation Guidance Measurements

3 Case Studies

3-16

The diagram symbols are defined as follows.

Seeker/Tracker Subsystem
The Seeker/Tracker subsystem controls the seeker gimbals to keep the seeker
dish aligned with the target and provides the guidance law with an estimate of
the sight line rate.

Tracker and Sightline Rate Estimator. The Tracker and Sightline Rate Estimator, the
most elaborate subsystem of the Seeker/Tracker subsystem because of its
complex error modeling, is shown below.

λ Navigation gain (> 2)

Vc Closing velocity

θb Body attitude

Sight line rate

σg Gimbal angle

σL Look angle

σd Dish angle

az_dem = λVc Demanded normal acceleration

θ· s

θ· s

Missile Guidance System

3-17

The subsystem contains a number of feedback loops, estimated parameters,
and parasitic effects for the homing guidance. The tracker loop time constant
tors is set to 0.05 second, a compromise between maximizing speed of
response and keeping the noise transmission within acceptable levels. The
stabilization loop compensates for body rotation rates, and the gain Ks, which
is the loop crossover frequency, is set as high as possible subject to the
limitations of the stabilizing rate gyro’s bandwidth. The sight line rate
estimate is a filtered value of the sum of the rate of change of the dish
angle measured by the stabilizing rate gyro and an estimated value for the rate
of change of the angular tracking error (e) measured by the receiver. In this
demo, the bandwidth of the estimator filter is set to half that of the bandwidth
of the autopilot.

Radome Aberration. Radome aberration is also modeled by the Tracker and
Sightline Rate Estimator subsystem.

Radome aberration is a parasitic feedback effect commonly modeled in
radar-guided missile designs. It occurs because the shape of the protective
covering over the seeker distorts the returning signal, and it gives a false
reading of the look angle to the target. The amount of distortion is, in general,

3 Case Studies

3-18

a nonlinear function of the current gimbal angle. But a commonly used
approximation is to assume a linear relationship between the gimbal angle and
the magnitude of the distortion. Often, other parasitic effects, such as
sensitivity to normal acceleration in the rate gyros, are also modeled to test the
robustness of the target tracker and estimator filters.

Simulating the Missile Guidance System
Running the guidance simulation demonstrates the performance of the overall
system. The target is defined to be traveling at a constant speed of 328 m/s on
a reciprocal course to the initial missile heading and 500 meters above the
initial missile position. The data, shown in the figure below, can be used to
determine if the missile can withstand the flight demands and complete the
mission to impact.

Missile Guidance System

3-19

The simulation results show that target acquisition occurs 0.69 second after
search initiation, with closed loop guidance starting after 0.89 second. Impact
with the target occurs at 3.46 seconds, with the range to target at the point of
closest approach calculated to be 0.26 meter.

3 Case Studies

3-20

Extending the Model
Modeling the airframe and guidance loop in a single plane is only the start of
the design process. Extending the model to a full six-degrees-of-freedom
representation requires the implementation of the full equations of motion for
a rigid body.

Six-degrees-of-freedom can be represented using quaternion or Euler Angles.
The quaternion implementation uses a quaternion to represent the angular
orientation of the body in space. The quaternion is appropriate when the
standard Euler angle definitions become singular as the pitch attitude tends to
±90 degrees. The Euler angle implementation uses the standard Euler angle
equations of motion. Euler angles are appropriate when obtaining trim
conditions and modeling linear airframes. This model contains one of the
six-degrees-of-freedom equations of motion blocks.

References
[1] Bennani, S., D. M. C. Willemsen, and C. W. Scherer, “Robust LPV control
with bounded parameter rates,” AIAA-97-3641, August 1997.

Missile Guidance System

3-21

[2] Mracek, C. P. and J. R. Cloutier, “Full Envelope Missile Longitudinal
Autopilot Design Using the State-Dependent Riccati Equation Method,”
AIAA-97-3767, August 1997.

[3] Shamma, J. S. and J. R. Cloutier, “Gain-Scheduled Missile Autopilot Design
Using Linear Parameter Varying Transformations,” Journal of Guidance,
Control and Dynamics, Vol. 16, No. 2, March-April 1993.

[4] Lin, Ching-Fang, Modern Navigation, Guidance, and Control Processing,
Vol. 2, ISBN 0-13-596230-7, Prentice Hall, 1991.

3 Case Studies

3-22

NASA HL-20 Lifting Body Airframe
This section shows how to model the airframe of a NASA HL-20 lifting body, a
low-cost complement to the Space Shuttle orbiter, with Simulink and the
Aerospace Blockset.

For most flight control designs, the airframe, or plant model, needs to be
modeled, simulated, and analyzed. Ideally, this airframe should be modeled
quickly, reusing blocks or model structure to reduce validation time and leave
more time available for control design. In this case study, the Aerospace
Blockset is used to rapidly model portions of the HL-20 airframe. The
remaining portions, including the calculation of the aerodynamic coefficients,
are modeled with Simulink. This case study examines the construction of the
Simulink model of the HL-20 airframe and touches on how the aerodynamic
data are used in the model.

This section includes the following topics:

• “NASA HL-20 Lifting Body” on page 3-22 provides an overview of the history
and purposes of the NASA HL-20 lifting body.

• “The HL-20 Airframe Model” on page 3-24 describes how the Aerospace
Blockset and Simulink are used to model the HL-20 airframe.

• “References” on page 3-35 provides a selected bibliography.

NASA HL-20 Lifting Body
The HL-20, also known as personnel launch system (PLS), is a lifting body
reentry vehicle designed to complement the Space Shuttle orbiter. It was
developed originally as a low-cost solution for getting to and from low Earth
orbit. It can carry up to 10 people and limited cargo [1].

The HL-20 lifting body can be placed in orbit either by launching it vertically
with booster rockets or by transporting it in the payload bay of the Space
Shuttle orbiter. The HL-20 lifting body deorbits using an onboard propulsion
system. Its reentry profile is nose first, horizontal, and unpowered.

NASA HL-20 Lifting Body Airframe

3-23

Top-Front View of the HL-20 Lifting Body (Photo: NASA Langley)

The HL-20 design has a number of benefits:

• Rapid turnaround between landing and launch reduces operating costs.

• The HL-20 has exceptional flight safety.

• It can land conventionally on runways.

Potential uses for the HL-20 include

• Orbital rescue of stranded astronauts

• International Space Station crew exchanges, if the Space Shuttle orbiter is
not available

• Observation missions

• Satellite servicing missions

Although the HL-20 program is not currently active, the aerodynamic data
from HL-20 tests are being used in current NASA projects [2].

3 Case Studies

3-24

The HL-20 Airframe Model
You can open the HL20 airframe model by entering aeroblk_HL20_main at the
command line.

HL-20 Airframe Model

Modeling Assumptions and Limitations
Preliminary aerodynamic data for the HL-20 lifting body are taken from NASA
document TM4302 [1].

The airframe model incorporates several key assumptions and limitations:

• The airframe is assumed to be rigid and have constant mass, center of
gravity, and inertia, since the model represents only the reentry portion of a
mission.

• HL-20 is assumed to be a laterally symmetric vehicle.

• Compressibility (Mach) effects are assumed to be negligible.

NASA HL-20 Lifting Body Airframe

3-25

• Control effectiveness is assumed to vary nonlinearly with angle of attack and
linearly with angle of deflection. Control effectiveness is not dependent on
sideslip angle.

• The nonlinear six-degrees-of-freedom aerodynamic model is a representation
of an early version of the HL-20. Therefore the model is not intended for
realistic performance simulation of later versions of the HL-20.

The typical airframe model consists of a number of components, such as

• Equations of motion

• Environmental models

• Calculation of aerodynamic coefficients, forces, and moments

The HL-20 airframe subsystem of the HL-20 airframe model contains five
subsystems, which model the typical airframe components:

• “6DoF (Euler Angles) Subsystem” on page 3-26

• “Environmental Models Subsystem” on page 3-27

• “Alpha, Beta, Mach Subsystem” on page 3-29

• “Aerodynamic Coefficients Subsystem” on page 3-30

• “Forces and Moments Subsystem” on page 3-34

3 Case Studies

3-26

HL-20 Airframe Subsystem

6DoF (Euler Angles) Subsystem
The 6DoF (Euler angles) subsystem contains the six-degrees-of-freedom
equations of motion for the airframe. In the 6DoF (Euler Angles) subsystem,
the body attitude is propagated in time using an Euler angle representation.
This subsystem is one of the equations of motion blocks from the Aerospace
Blockset. A quaternion representation is also available. See the 6DoF (Euler
Angles) and 6DoF (Quaternion) block reference pages for more information on
these blocks.

NASA HL-20 Lifting Body Airframe

3-27

Environmental Models Subsystem
The Environmental Models subsystem contains the following
blocks/subsystems:

• The WGS84 Gravity Model block implements the mathematical
representation of the geocentric equipotential ellipsoid of the World Geodetic
System (WGS84).

See the WGS84 Gravity Model block reference page for more information on
this block.

• The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) standard lower atmospheric values for absolute
temperature, pressure, density, and speed of sound, given the input
geopotential altitude.

See the COESA Atmosphere Model block reference page for more
information on this block.

• The Wind Models subsystem contains the following blocks:

- The Wind Shear Model block adds wind shear to the aerospace model.

See the Wind Shear Model block reference page for more information on
this block.

- The Discrete Wind Gust Model block implements a wind gust of the
standard “1 − cosine” shape.

See the Discrete Wind Gust Model block reference page for more
information on this block.

- The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters.

See Dryden Wind Turbulence Model (Continuous) block reference page for
more information on this block.

These are some of the standard environmental blocks contained in the
Aerospace Blockset. The environmental models implement mathematical
representations within standard references, such as U.S. Standard
Atmosphere, 1976.

The following figures show the environmental and wind turbulence models
used in the model.

3 Case Studies

3-28

Environmental Models in HL-20 Airframe Model

NASA HL-20 Lifting Body Airframe

3-29

Wind Models in HL-20 Airframe Model

Alpha, Beta, Mach Subsystem
The Alpha, Beta, Mach subsystem calculates additional parameters needed for
the aerodynamic coefficient computation and lookup. These additional
parameters include

• Mach number

• Incidence angles ()

• Airspeed

• Dynamic pressure

The Alpha, Beta, Mach subsystem corrects the body velocity for wind velocity
and corrects the body rates for wind angular acceleration.

α β,

3 Case Studies

3-30

Additional Computed Parameters for HL-20 Airframe Model (Alpha, Beta,
Mach Subsystem)

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the six aerodynamic coefficients, which are
implemented as in NASA document TM4302. However, the ground and landing
gear effects are not used in this aerodynamic model. The six aerodynamic
coefficients are as follows.

Cx Axial-force coefficient

Cy Side-force coefficient

Cz Normal-force coefficient

Cl Rolling-moment coefficient

Cm Pitching-moment coefficient

Cn Yawing-moment coefficient

NASA HL-20 Lifting Body Airframe

3-31

The contribution of each of these is calculated in the subsystems (body rate,
actuator increment, and datum), and then summed and passed to the Forces
and Moments subsystem.

Aerodynamic Coefficients in HL-20 Airframe Model

Aerodynamic Coefficient Calculation. The aerodynamic data was gathered from
wind tunnel tests, mainly on scaled models of a preliminary subsonic
aerodynamic model of the HL-20. The data was curve fitted, and most of the
aerodynamic coefficients are described by polynomial functions of angle of
attack and sideslip angle. In-depth details about the aerodynamic data and the
data reduction can be found in NASA document TM4302 [1].

The polynomial functions contained in the M-file aeroblk_init_hl20.m are
used to calculate lookup tables used by the model’s preload function. Lookup
tables substitute for polynomial functions. Depending on the order and
implementation of the function, using lookup tables can be more efficient than
recalculating values at each time step with functions. To further improve

3 Case Studies

3-32

model efficiency, most tables are implemented as PreLook-up Index Search and
Interpolation (n-D) using PreLook-up blocks. These blocks improve efficiency
most when there are a number of tables with identical breakpoints. These
blocks reduce the number of times the model has to search for a breakpoint in
a given time step. Once the tables are populated by the preload function, the
aerodynamic coefficient can be computed.

The equations for calculating the six aerodynamic coefficients are divided
among three subsystems:

• “Datum Coefficients Subsystem” on page 3-32

• “Body Rate Damping Subsystem” on page 3-33

• “Actuator Increment Subsystem” on page 3-33

Summing the Datum Coefficients, Body Rate Damping, and Actuator
Increments subsystem outputs generates the six aerodynamic coefficients used
to calculate the airframe forces and moments.

Datum Coefficients Subsystem. The Datum Coefficients subsystem calculates
coefficients for the basic configuration without control surface deflection. These
datum coefficients depend only on the incidence angles of the body.

Datum Coefficients Subsystem

NASA HL-20 Lifting Body Airframe

3-33

Body Rate Damping Subsystem. Dynamic derivatives are computed in the Body
Rate Damping subsystem.

Body Rate Damping Subsystem

Actuator Increment Subsystem. Lookup tables determine the incremental changes
to the coefficients due to the control surface deflections in the Actuator
Increment subsystem. Available control surfaces include symmetric wing flaps
(elevator), differential wing flaps (ailerons), positive body flaps, negative body
flaps, differential body flaps, and an all-movable rudder.

3 Case Studies

3-34

Actuator Increments Subsystem

Forces and Moments Subsystem. The last subsystem in the HL-20 airframe model
is Forces and Moments. The Forces and Moments subsystem calculates the
body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters. The equations
defining the body forces and body moments are found in NASA document
TM4302 [1].

NASA HL-20 Lifting Body Airframe

3-35

Forces and Moments Subsystem

Completing the Model
The Simulink and the Aerospace Blockset subsystems that you have examined
complete the HL-20 airframe. The next step in the flight control design process
is to analyze, trim, and linearize the HL-20 airframe so that a flight control
system can be designed for it. You can see an example of an auto-land flight
control for the HL-20 airframe by entering aeroblk_HL20_main in the
command window.

References
Additional information about the HL-20 lifting body can be found at
http://www.astronautix.com/craft/hl20.htm.

[1] Jackson E. B., and C. L. Cruz, C. L., “Preliminary Subsonic Aerodynamic
Model for Simulation Studies of the HL-20 Lifting Body,” NASA TM4302
(August 1992). This document is included in the zip file available from
MATLAB Central.

[2] Morring, F., Jr., “ISS ‘Lifeboat’ Study Includes ELVs,” Aviation Week &
Space Technology (May 20, 2002).

See also:
http://www.aviationnow.com/content/publication/awst/20020520/aw46.
htm.

3 Case Studies

3-36

Ideal Airspeed Correction
This case study demonstrates how to create indicated and true airspeed using
Simulink and the Aerospace Blockset. To find out more, read the following
sections:

• “Airspeed Correction Models” on page 3-36 shows how to open the models
that are used in this case study.

• “Measuring Airspeed” on page 3-37 describes the different types of airspeed
used in aerospace engineering.

• “Modeling Airspeed Correction” on page 3-38 describes how the Ideal
Airspeed Correction block is implemented in the two models.

• “Simulating Airspeed Correction” on page 3-41 describes how to run the
model simulation.

Airspeed Correction Models
To view the airspeed correction models, enter the following at the MATLAB
command line.

aeroblk_indicated

and

aeroblk_calibrated

aeroblk_indicated Model

Ideal Airspeed Correction

3-37

aeroblk_calibrated Model

Measuring Airspeed
To measure airspeed, most light aircraft designs implement pilot-static
airspeed indicators. Pilot-static airspeed indicators measure airspeed by an
expandable capsule that expands and contracts with increasing and decreasing
dynamic pressure. This is known as calibrated airspeed (CAS), which denotes
the airspeed that a pilot would see in the cockpit of an aircraft.

To help compensate for measurement errors, airspeed is divided into three
definitions of measurement.

Airspeed Type Description See Also

Calibrated Indicated airspeed that is
corrected for the
calibration error

“Examining the
Calibration Error” on
page 3-38

Equivalent Calibrated airspeed that
is corrected for the
compressibility error

“Examining the
Compressibility Error” on
page 3-38

True Equivalent airspeed that
is corrected for the density
error

“Examining the Density
Error” on page 3-38

3 Case Studies

3-38

Examining the Calibration Error
An airspeed indicator features a static vent to maintain a pressure equal to
atmospheric pressure inside the instrument. Position and placement of the
static vent along with angle of attack and velocity of the aircraft will determine
the pressure inside the airspeed indicator, and thereby, the amount of
calibration error of the airspeed indicator. Therefore, a calibration error is
specific to an aircraft’s design.

An airspeed calibration table, which is usually included in the pilot operating
handbook or other aircraft documentation, helps pilots convert the indicated
airspeed to the calibrated airspeed.

Examining the Compressibility Error
The ability of air to resist compression diminishes as altitude and airspeed
increases, or when contained in a restricted volume. A restricted volume of air
exists within a pilot-static airspeed indicator. When flying at high altitudes
and high airspeeds, calibrated airspeed is always higher than equivalent
airspeed. Equivalent airspeed can be derived by compensating the calibrated
airspeed for the compressibility error.

Examining the Density Error
At high altitudes, airspeed indicators read lower than true airspeed because of
lower air density. True airspeed represents the compensation of equivalent
airspeed for the density error, which translates to the difference in air density
at altitude from the air density at sea level on a standard day.

Modeling Airspeed Correction
The aeroblk_indicated and aeroblk_calibrated models show how to take
true airspeed and correct it to indicated airspeed for instrument display in a
Cessna 150M Commuter airplane. The aeroblk_indicated model implements
a conversion to indicated airspeed, and the aeroblk_calibrated model
implements a conversion to true airspeed.

Each model consists of two main components:

• “COESA Atmosphere Model Block” on page 3-39 calculates the change in
atmospheric conditions with changing altitude.

• “Ideal Airspeed Correction Block” on page 3-39 transforms true airspeed to
calibrated airspeed and vice versa.

Ideal Airspeed Correction

3-39

COESA Atmosphere Model Block
The COESA Atmosphere Model block is a mathematical representation of the
1976 Committee on Extension to the Standard Atmosphere (COESA) United
States standard lower atmospheric values for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.Below 32000
meters (approximately 104987 feet), the U.S. Standard Atmosphere is identical
with the Standard Atmosphere of the International Civil Aviation
Organization (ICAO).

The aeroblk_indicated and aeroblk_calibrated models use the COESA
Atmosphere Model block to supply the speed of sound and air pressure inputs
for the Ideal Airspeed Correction block in each model.

Ideal Airspeed Correction Block
The Ideal Airspeed Correction block lets you compensate for the airspeed
measurement errors to convert airspeed from one type to another type. The
following table contains the Ideal Airspeed Correction block’s airspeed inputs
and outputs.

In the aeroblk_indicated model, the Ideal Airspeed Correction block
transforms true airspeed to calibrated airspeed. In the aeroblk_calibrated
model, the Ideal Airspeed Correction block transforms calibrated airspeed to
true airspeed.

To understand how the Ideal Airspeed Correction block implements airspeed
transformations as mathematical formulas, see the following sections:

Airspeed Input Airspeed Output

True Airspeed Equivalent airspeed

Calibrated airspeed

Equivalent Airspeed True airspeed

Calibrated airspeed

Calibrated Airspeed True airspeed

Equivalent airspeed

3 Case Studies

3-40

• “True Airspeed Implementation” on page 3-40

• “Calibrated Airspeed Implementation” on page 3-40

• “Equivalent Airspeed Implementation” on page 3-40

True Airspeed Implementation. True airspeed (TAS) is implemented as an input
and as a function of equivalent airspeed (EAS), which can be expressed as

The symbols are defined as follows.

Calibrated Airspeed Implementation. Calibrated airspeed (CAS). which is derived
using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, can be expressed as

The symbols are defined as follows:

Equivalent Airspeed Implementation. Equivalent airspeed (EAS). which is derived
using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, can be expressed as:

Speed of sound at altitude in m/s2

δ Relative pressure ratio at altitude

a0 Speed of sound at mean sea level in m/s2

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Specific heat ratio

Dynamic pressure at mean sea level in N/m2

TAS EAS a×
a0 δ

-----------------------=

a

CAS
2γP0

γ 1–()ρ0
----------------------- q

P0
------ 1+ 
  γ 1–() γ⁄

1–=

ρ0

P0

γ

q

Ideal Airspeed Correction

3-41

The symbols are defined as follows:

Simulating Airspeed Correction
In the aeroblk_indicated model, the aircraft is defined to be traveling at a
constant speed of 72 knots (true airspeed) and altitude of 500 feet. The flaps
are set to 40 degrees. The COESA Atmosphere Model block takes the altitude
as an input and outputs the speed of sound and air pressure. Taking the speed
of sound, air pressure, and airspeed as inputs, the Ideal Airspeed Correction
block converts true airspeed to calibrated airspeed. Finally, the Calculate IAS
subsystem uses the flap setting and calibrated airspeed to calculate indicated
airspeed.

As you can see in the following figure, the display shows both indicated
airspeed and calibrated airspeed.

Air density at mean sea level in kg/m3

Static pressure at altitude in N/m2

Specific heat ratio

Dynamic pressure at mean sea level in N/m2

EAS 2γP
γ 1–()ρ0

----------------------- q
P
---- 1+ 
  γ 1–() γ⁄

1–=

ρ0

P

γ

q

3 Case Studies

3-42

In the aeroblk_calibrated model, the aircraft is defined to be traveling at a
constant speed of 70 knots (indicated airspeed) and altitude of 500 feet. The
flaps are set to 10 degrees. The COESA Atmosphere Model block takes the
altitude as an input and outputs the speed of sound and air pressure. The
Calculate CAS subsystem uses the flap setting and indicated airspeed to
calculate the calibrated airspeed. Finally, using the speed of sound, air
pressure, and true calibrated airspeed as inputs, the Ideal Airspeed Correction
block converts calibrated airspeed back to true airspeed.

As you can see in the following figure, the display shows both calibrated
airspeed and true airspeed.

1903 Wright Flyer Model

3-43

1903 Wright Flyer Model
This section describes the 1903 Wright Flyer model, which was built using
Simulink, the Aerospace Blockset, and the Virtual Reality Toolbox. Built by
Orville and Wilbur Wright, the Wright Flyer took to the skies in December
1903 and represented the dawn of the aviation age. The Wright brothers’ flying
machine achieved the following goals:

• Left the ground under its own power

• Moved forward and maintained its speed

• Landed at an elevation no lower than where it started

This model is based on an earlier simulation created by Frederick J. Hooven[1].
That simulation explored the longitudinal stability of the Wright Flyer, and
therefore, dealt only with the forward and vertical motion along with the pitch
angle. The Wright Flyer suffered from numerous engineering challenges,
including dynamic and static instability. Laterally, the Flyer tended to over
turn in crosswinds and gusts, and longitudinally, the pitch angle would
undulate[2].

Under these constraints, the model recreates the longitudinal flight dynamics
that pilots of the Wright Flyer would have experienced. Because they were able
to control lateral motion, Orville and Wilbur Wright were able to maintain a
relatively straight flight path.

For more information, see the following sections:

• “Wright Flyer Model” on page 3-44 shows how to open the model used in this
case study.

• “Airframe Subsystem” on page 3-44 describes the airframe subsystem.

• “Environment Subsystem” on page 3-49 describes the environment
subsystem.

• “Pilot Subsystem” on page 3-51 describes the pilot subsystem.

• “Running the Simulation” on page 3-51 provides a demonstration of the
Wright Flyer model.

3 Case Studies

3-44

Wright Flyer Model
To view the airspeed correction models, enter the following at the MATLAB
command line.

aeroblk_wf_3dof

aeroblk_wf_3dof Model

Airframe Subsystem
The Airframe subsystem simulates the rigid body dynamics of the Wright
Flyer airframe, including elevator angle of attack, aerodynamic coefficients,
calculation of forces and moments, and three-degrees-of-freedom equations of
motion.

1903 Wright Flyer Model

3-45

Airframe Subsystem

The Airframe subsystem consists of the following parts:

• “Elevator Angle of Attack Subsystem” on page 3-45

• “Aerodynamic Coefficients Subsystem” on page 3-46

• “Forces and Moments Subsystem” on page 3-47

• “3DoF (Body Axes) Block” on page 3-48

Elevator Angle of Attack Subsystem
The Elevator Angle of Attack subsystem calculates the effective elevator angle
for the Wright Flyer airframe and feeds its output to the Pilot subsystem.

3 Case Studies

3-46

Elevator Angle of Attack Subsystem

Aerodynamic Coefficients Subsystem
The Aerodynamic Coefficients subsystem contains aerodynamic data and
equations for calculating the aerodynamic coefficients, which are summed and
passed to the Forces and Moments subsystem. Stored in data sets, the
aerodynamic coefficients are determined by interpolation using PreLook-Up
blocks.

1903 Wright Flyer Model

3-47

Aerodynamic Coefficients Subsystem

Forces and Moments Subsystem
The aerodynamic forces and moments acting on the airframe are generated
from aerodynamic coefficients. The Forces and Moments subsystem calculates
the body forces and body moments acting on the airframe about the center of
gravity. These forces and moments depend on the aerodynamic coefficients,
thrust, dynamic pressure, and reference airframe parameters.

3 Case Studies

3-48

Forces and Moments Subsystem

3DoF (Body Axes) Block
The 3DoF (Body Axes) block use equations of motion to define the linear and
angular motion of the Wright Flyer airframe. Conversions from the axis system
of Hooven’s simulation and body axes are also performed.

1903 Wright Flyer Model

3-49

3DoF (Body Axes) Block Mask

Environment Subsystem
The Environment subsystem of the Wright Flyer model contains a variety of
blocks from the Environment sublibrary of the Aerospace Blockset, including
wind, atmosphere, and gravity. In addition, the Environment subsystem
calculates airspeed and dynamic pressure.

3 Case Studies

3-50

Environment Subsystem

The first and final flights of the Wright Flyer occurred on December 17, 1903.
Orville and Wilbur Wright chose an area near Kitty Hawk, North Carolina,
which is situated near the Atlantic coast. On that day, wind gusts of more than
25 m.p.h. were recorded at Kitty Hawk. Indeed, after the final flight on that
blustery December day, a wind gust caught the Wright Flyer and flipped it
over, damaging it beyond repair.

In the Wright Flyer model’s Environmental subsystem, the Discrete Wind Gust
Model block provides wind gusts to the simulated environment. The other
blocks are

• The Incidence and Airspeed block calculates the angle of attack and
airspeed.

• The COESA Atmosphere Model block calculates the air density.

• The Dynamic Pressure block takes the air density and velocity and computes
the dynamic pressure.

• The WGS84 Gravity Block produces the gravity at the Wright Flyer’s
latitude and height.

1903 Wright Flyer Model

3-51

Pilot Subsystem
The Pilot subsystem controls the aircraft by responding to both pitch angle
(attitude) and angle of attack. If the angle of attack differs from the set angle
of attack by more than one degree, the Pilot subsystem responds with a
correction of the elevator (canard) angle. When angular velocity exceeds +/-
0.02 rad/s, angular velocity and angular acceleration are also taken into
consideration with additional corrections to the elevator angle.

Pilot reaction time largely contributes to the success of the flights. Hooven
found the reaction time of 0.06 second to be optimum for successful flights. The
Delay of Pilot block recreates this effect by producing a delay of no more than
0.08 second.

Pilot Subsystem

Running the Simulation
Default values for this simulation are set to allow the Wright Flyer model to
take off and land successfully. The pilot reaction time (wf_B3) is set to 0.06
second, the desired angle of attack (wf_alphaa) is constant, and the altitude
attained is low. The Wright Flyer model reacts similarly to the actual Wright
Flyer. It leaves the ground, moves forward, and lands on a point as high as that
from which it started. Examining the attitude, this model exhibits the
longitudinal “undulation” of the original aircraft.

3 Case Studies

3-52

Attitude Scope

A pilot with quick reaction times and ideal flight conditions make it possible to
fly the Wright Flyer successfully. The Wright Flyer model confirms that it was
quite challenging to control the longitudinal motion of the Flyer. The longest
recorded flight on that day lasted a mere 59 seconds and covered 852 feet.

Using the Virtual Reality Toolbox, the Wright Flyer model also provides a
Virtual Reality Modeling Language (VRML) world. Thaddeus Beier created the
initial Wright Flyer model in Inventor format.

1903 Wright Flyer Model

3-53

The VR Sink block enables the flight motion to be viewed in three dimensions.

1903 Wright Flyer Virtual Reality World

References
[1] Hooven, Frederick J., “Longitudinal Dynamics of the Wright Brothers’
Early Flyers ‘A Study in Computer Simulation of Flight’,” from The Wright
Flyer An Engineering Perspective edited by Howard S. Wolko, 1987.

[2] Culick, F. E. C. and Jex, H. R., “Aerodynamics, Stability, and Control of the
1903 Wright Flyer,” from The Wright Flyer An Engineering Perspective edited
by Howard S. Wolko, 1987.

Additional information about the 1903 Wright Flyer can be found at the
following locations:

• http://www.wrightexperience.com

• http://wright.nasa.gov

3 Case Studies

3-54

4

Block Reference

Blocks — Categorical List (p. 4-2) Aerospace Blockset blocks by category

Blocks — Alphabetical List (p. 4-11) Aerospace Blockset blocks by name

4 Block Reference

4-2

Blocks — Categorical List 4

The Aerospace Blockset’s block library, aerolib, is organized into libraries
according to their behavior. The aerolib window displays the block library
icons and names.

Actuators Library Actuator models

Aerodynamics Library Aerodynamics models

Animation Library 3-D animation during simulation

Environment Library Environmental models, including the
Atmosphere Sublibrary, the Gravity
Sublibrary, and the Wind Sublibrary

Flight Parameters Library Flight parameter models

Equations of Motion Library Equation of motion models, including the
3DoF Sublibrary and the 6DoF Sublibrary

GNC Library Gain scheduling models, including the
Controls Sublibrary and the Guidance
Sublibrary

Mass Properties Library Center of gravity and tensor models

Propulsion Library Simple propulsion system models

Utilities Library Common mathematical operations and
conversions, including the Axes
Transformations Sublibrary, the Unit
Conversions Sublibrary, and the Math
Operations Sublibrary

Blocks — Categorical List

4-3

Actuators Library

Aerodynamics Library

Animation Library

Environment Library
The Environment Library contains the following sublibraries:

Second Order Linear
Actuator

Implement a second-order linear actuator

Second Order Nonlinear
Actuator

Implement a second-order nonlinear actuator
with rate and deflection limits

Aerodynamic Forces and
Moments

Compute the aerodynamic forces and moments
using the aerodynamic coefficients, dynamic
pressure, center of gravity, and center of
pressure

3DoF Animation Create a 3-D Handle Graphics® animation of a
three-degrees-of-freedom object

6DoF Animation Create a 3-D Handle Graphics animation of a
six-degrees-of-freedom object

4 Block Reference

4-4

Atmosphere Sublibrary

Gravity Sublibrary

Wind Sublibrary

COESA Atmosphere Model Implement the 1976 Committee on Extension
to the Standard Atmosphere (COESA) lower
atmosphere

ISA Atmosphere Model Implement the International Standard
Atmosphere (ISA)

Lapse Rate Model Implement Lapse Rate Model for atmosphere

Non-Standard Day 210C Implement the MIL-STD-210C climatic data

Non-Standard Day 310 Implement the MIL-HDBK-310 climatic data

Pressure Altitude Calculate pressure altitude based on ambient
pressure

WGS84 Gravity Model Implement the 1984 World Geodetic System
representation of Earth’s gravity

World Magnetic Model 2000 Calculate the Earth's magnetic field at a
specific location and time using the World
Magnetic Model 2000 (WMM2000)

Discrete Wind Gust Model Generate discrete wind gust

Dryden Wind Turbulence
Model (Continuous)

Generate wind turbulence with the Dryden
velocity spectra

Dryden Wind Turbulence
Model (Discrete)

Generate wind turbulence with the Dryden
velocity spectra

Horizontal Wind Model Transform horizontal wind into body-axes
coordinates

Von Karman Wind
Turbulence Model
(Continuous)

Generate atmospheric turbulence

Wind Shear Model Calculate wind shear conditions

Blocks — Categorical List

4-5

Flight Parameters Library

Equations of Motion Library
The Equations of Motion library contains the following sublibraries:

Dynamic Pressure Compute dynamic pressure using velocity and
air density

Ideal Airspeed Correction Calculate equivalent airspeed (EAS), calibrated
airspeed (CAS), or true airspeed (TAS) from
each other

Incidence & Airspeed Calculate incidence and air speed

Incidence, Sideslip &
Airspeed

Calculate incidence, sideslip and air speed

Mach Number Compute Mach number using velocity and
speed of sound

Relative Ratio Calculate relative atmospheric ratios

4 Block Reference

4-6

3DoF Sublibrary

6DoF Sublibrary

GNC Library
The GNC library contains the following sublibraries:

3DoF (Body Axes) Implement three-degrees-of-freedom equations
of motion

Custom Variable Mass
3DoF (Body Axes)

Implement three-degrees-of-freedom equations
of motion

Simple Variable Mass 3DoF
(Body Axes)

Implement three-degrees-of-freedom equations
of motion

6DoF (Euler Angles) Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

6DoF (Quaternion) Implement a quaternion representation of
six-degrees-of-freedom equations of motion

Custom Variable Mass
6DoF (Euler Angles)

Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

Custom Variable Mass
6DoF (Quaternion)

Implement a quaternion representation of
six-degrees-of-freedom equations of motion

Simple Variable Mass 6DoF
(Euler Angles)

Implement an Euler angle representation of
six-degrees-of-freedom equations of motion

Custom Variable Mass
6DoF (Quaternion)

Implement a quaternion representation of
six-degrees-of-freedom equations of motion

Blocks — Categorical List

4-7

Controls Sublibrary

1D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on one scheduling
parameter

1D Controller Blend
u=(1-L).K1.y+L.K2.y

Implement a 1-D vector of state-space
controllers by linear interpolation of their
outputs

1D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
one scheduling parameter

1D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

2D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on two scheduling
parameters

2D Controller Blend Implement a 2-D vector of state-space
controllers by linear interpolation of their
outputs

2D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
two scheduling parameters

2D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

3D Controller
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller depending on three scheduling
parameters

3D Observer Form
[A(v),B(v),C(v),F(v),H(v)]

Implement a gain-scheduled state-space
controller in an observer form depending on
three scheduling parameters

3D Self-Conditioned
[A(v),B(v),C(v),D(v)]

Implement a gain-scheduled state-space
controller in a self-conditioned form

4 Block Reference

4-8

Guidance Sublibrary

Mass Properties Library

Propulsion Library

Utilities Library
The Utilities library contains the following sublibraries:

Gain Scheduled Lead-Lag Implement a first-order lead-lag with
gain-scheduled coefficients

Interpolate Matrix(x) Return an interpolated matrix for given input x

Interpolate Matrix(x,y) Return an interpolated matrix for given inputs
x and y

Interpolate Matrix(x,y,z) Return an interpolated matrix for given inputs
x, y, and z

Self-Conditioned [A,B,C,D] Implement a state-space controller in a
self-conditioned form

Calculate Range Calculate the range between two crafts given
their respective positions

Estimate Center of Gravity Calculate the center of gravity location

Estimate Inertia Tensor Calculate the inertia tensor

Moments About CG Due to
Forces

Compute moments about center of gravity due
to forces that are applied at point CP, not the
center of gravity

Symmetric Inertia Tensor Create an inertia tensor from moments and
products of inertia

Turbofan Engine System Implement a first-order representation of a
turbofan engine with controller

Blocks — Categorical List

4-9

Axes Transformations Sublibrary

Math Operations Sublibrary

Unit Conversions Sublibrary

Direction Cosine Matrix to
Euler Angles

Convert direction cosine matrix to Euler angles

Direction Cosine Matrix to
Quaternions

Convert direction cosine matrix to quaternion
vector

Euler Angles to Direction
Cosine Matrix

Convert Euler angles to direction cosine matrix

Euler Angles to
Quaternions

Convert Euler angles to quaternion vector

Quaternions to Direction
Cosine Matrix

Convert quaternion vector to direction cosine
matrix

Quaternions to Euler
Angles

Convert quaternion vector to Euler angles

3x3 Cross Product Calculate the cross product of two 3-by-1
vectors

Adjoint of 3x3 Matrix Compute the adjoint matrix for the input
matrix

Create 3x3 Matrix Create a 3-by-3 matrix from nine input values

Determinant of 3x3 Matrix Compute the determinant for the input matrix

Invert 3x3 Matrix Compute the inverse of 3-by-3 matrix using
determinant formula

SinCos Compute the sine and cosine of input angle

Acceleration Conversion Convert from acceleration units to desired
acceleration units

Angle Conversion Convert from angle units to desired angle units

4 Block Reference

4-10

Angular Acceleration
Conversion

Convert from angular acceleration units to
desired angular acceleration units

Angular Velocity
Conversion

Convert from angular velocity units to desired
angular velocity units

Density Conversion Convert from density units to desired density
units

Force Conversion Convert from force units to desired force units

Length Conversion Convert from length units to desired length
units

Mass Conversion Convert from mass units to desired mass units

Pressure Conversion Convert from pressure units to desired
pressure units

Temperature Conversion Convert from temperature units to desired
temperature units

Velocity Conversion Convert from velocity units to desired velocity
units

Blocks — Alphabetical List

4-11

Blocks — Alphabetical List 4

This section contains block reference pages listed alphabetically.

1D Controller [A(v),B(v),C(v),D(v)]

4-12

41D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on one
scheduling parameter

Library GNC/Controls

Description The 1D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a parameter over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v()x B v()y+=

u C v()x D v()y+=

1D Controller [A(v),B(v),C(v),D(v)]

4-13

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D scheduling,
the A-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the A-matrix
corresponding to the first entry of v is the identity matrix, then
A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. In the case of 1-D scheduling,
the B-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the B-matrix
corresponding to the first entry of v is the identity matrix, then
B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. In the case of 1-D scheduling,
the C-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the C-matrix
corresponding to the first entry of v is the identity matrix, then
C(:,:,1) = 1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. In the case of 1-D scheduling,
the D-matrix should have three dimensions, the last one corresponding to
the scheduling variable v. Hence, for example, if the D-matrix
corresponding to the first entry of v is the identity matrix, then
D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

1D Controller [A(v),B(v),C(v),D(v)]

4-14

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

4-15

41D Controller Blend u=(1-L).K1.y+L.K2.yPurpose Implement a 1-D vector of state-space controllers by linear interpolation of
their outputs

Library GNC/Controls

Description The 1D Controller Blend u=(1-L).K1.y+L.K2.y block implements an array of
state-space controller designs. The controllers are run in parallel, and their
outputs interpolated according to the current flight condition or operating
point. The advantage of this implementation approach is that the state-space
matrices A, B, C, and D for the individual controller designs do not need to vary
smoothly from one design point to the next.

For example, suppose two controllers are designed at two operating points
v=vmin and v=vmax. The 1D Controller Blend block implements

For longer arrays of design points, the blocks only implement nearest neighbor
designs. For the 1D Controller Blend block, at any given instant in time, three
controller designs are being updated. This reduces computational
requirements.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

x1
· A1x1 B1y+=

u1 C1x1 D1y+=

x2
· A2x2 B2y+=

u2 C= 2x2 D2y+

u 1 λ–()u1 λu2+=

λ

0 v vmin<

v vmin–

vmax vmin–
-------------------------------- vmin v vmax≤ ≤

1 v vmax>







=

1D Controller Blend u=(1-L).K1.y+L.K2.y

4-16

Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. In the case of 1-D blending,
the A-matrix should have three dimensions, the last one corresponding to
scheduling variable v. Hence, for example, if the A-matrix corresponding to
the first entry of v is the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation.

C-matrix(v)
C-matrix of the state-space implementation.

D-matrix(v)
D-matrix of the state-space implementation.

1D Controller Blend u=(1-L).K1.y+L.K2.y

4-17

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control System Toolbox.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller Blend

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-18

41D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on one scheduling parameter

Library GNC/Controls

Description The 1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form

The main application of this blocks is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

Dialog Box

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

µ

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-19

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

F-matrix(v)
State-feedback matrix. The F-matrix should have three dimensions, the
last one corresponding to the scheduling variable v. Hence, for example, if
the F-matrix corresponding to the first entry of v is the identity matrix,
then F(:,:,1) = [1 0;0 1];.

H-matrix(v)
Observer (output injection) matrix. The H-matrix should have three
dimensions, the last one corresponding to the scheduling variable v. Hence,
for example, if the H-matrix corresponding to the first entry of v is the
identity matrix, then H(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-20

The second input is the scheduling variable.

The third input is measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (1 Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-21

41D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 1D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
parameter over which A, B, C, and D are defined. This type of controller
scheduling assumes that the matrices A, B, C, and D vary smoothly as a
function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-22

Dialog Box

A-matrix(v)
A-matrix of the state-space implementation. The A-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the A-matrix corresponding to the first entry of v is
the identity matrix, then A(:,:,1) = [1 0;0 1];.

B-matrix(v)
B-matrix of the state-space implementation. The B-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the B-matrix corresponding to the first entry of v is
the identity matrix, then B(:,:,1) = [1 0;0 1];.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-23

C-matrix(v)
C-matrix of the state-space implementation. The C-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the C-matrix corresponding to the first entry of v is
the identity matrix, then C(:,:,1) = [1 0;0 1];.

D-matrix(v)
D-matrix of the state-space implementation. The D-matrix should have
three dimensions, the last one corresponding to the scheduling variable v.
Hence, for example, if the D-matrix corresponding to the first entry of v is
the identity matrix, then D(:,:,1) = [1 0;0 1];.

Scheduling variable breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v
should be same as the size of the third dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second input is the scheduling variable conforming to the dimensions of
the state-space matrices.

The third input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

1D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-24

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

1D Controller Blend u=(1-L).K1.y+L.K2.y

1D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

4-25

42D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on two
scheduling parameters

Library GNC/Controls

Description The 2D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

Dialog Box

x· A v()x B v()y+=

u C v()x D v()y+=

2D Controller [A(v),B(v),C(v),D(v)]

4-26

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

2D Controller [A(v),B(v),C(v),D(v)]

4-27

Inputs and
Outputs

The first input is the measurements.

The second and third block inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

4-28

42D Controller BlendPurpose Implement a 2-D vector of state-space controllers by linear interpolation of
their outputs

Library GNC/Controls

Description The 2D Controller Blend block implements an array of state-space controller
designs. The controllers are run in parallel, and their outputs interpolated
according to the current flight condition or operating point. The advantage of
this implementation approach is that the state-space matrices A, B, C, and D
for the individual controller designs do not need to vary smoothly from one
design point to the next.

For the 2D Controller Blend block, at any given instant in time, nine controller
designs are updated.

As the value of the scheduling parameter varies and the index of the controllers
that need to be run changes, the states of the oncoming controller are
initialized by using the self-conditioned form as defined for the
Self-Conditioned [A,B,C,D] block.

2D Controller Blend

4-29

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D blending,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation.

C-matrix(v1,v2)
C-matrix of the state-space implementation.

2D Controller Blend

4-30

D-matrix(v1,v2)
D-matrix of the state-space implementation.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
For oncoming controllers, an observer-like structure is used to ensure that
the controller output tracks the current block output, u. The poles of the
observer are defined in this dialog box as a vector, the number of poles
being equal to the dimension of the A-matrix. Poles that are too fast result
in sensor noise propagation, and poles that are too slow result in the failure
of the controller output to track u.

Inputs and
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control System Toolbox.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 5.

2D Controller Blend

4-31

See Also 1D Controller Blend u=(1-L).K1.y+L.K2.y

2D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-32

42D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on two scheduling parameters

Library GNC/Controls

Description The 2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of these blocks is to implement a controller designed
using H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

µ

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-33

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-34

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

F-matrix(v1,v2)
State-feedback matrix. In the case of 2-D scheduling, the F-matrix should
have four dimensions, the last two corresponding to scheduling variables
v1 and v2. Hence, for example, if the F-matrix corresponding to the first
entry of v1 and first entry of v2 is the identity matrix, then F(:,:,1,1) = [1
0;0 1];.

H-matrix(v1,v2)
Observer (output injection) matrix. In the case of 2-D scheduling, the
H-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the H-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then H(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the set-point error.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-35

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

Examples See H-Infinity Controller (Two Dimensional Scheduling) in the
aeroblk_lib_HL20 demo library for an example of this block.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-36

42D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 2D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. This block implements a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-37

Dialog Box

A-matrix(v1,v2)
A-matrix of the state-space implementation. In the case of 2-D scheduling,
the A-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the A-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then A(:,:,1,1) = [1 0;0 1];.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-38

B-matrix(v1,v2)
B-matrix of the state-space implementation. In the case of 2-D scheduling,
the B-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the B-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then B(:,:,1,1) = [1 0;0 1];.

C-matrix(v1,v2)
C-matrix of the state-space implementation. In the case of 2-D scheduling,
the C-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the C-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then C(:,:,1,1) = [1 0;0 1];.

D-matrix(v1,v2)
D-matrix of the state-space implementation. In the case of 2-D scheduling,
the D-matrix should have four dimensions, the last two corresponding to
scheduling variables v1 and v2. Hence, for example, if the D-matrix
corresponding to the first entry of v1 and first entry of v2 is the identity
matrix, then D(:,:,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter, v. Hence the
number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-39

Inputs and
Outputs

The first input is the measurements.

The second and third inputs are the scheduling variables ordered conforming
to the dimensions of the state-space matrices.

The fourth input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

2D Controller Blend

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

4-40

43D Controller [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller depending on three
scheduling parameters

Library GNC/Controls

Description The 3D Controller [A(v),B(v),C(v),D(v)] block implements a gain-scheduled
state-space controller as defined by the equations

where v is a vector of parameters over which A, B, C, and D are defined. This
type of controller scheduling assumes that the matrices A, B, C, and D vary
smoothly as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

3D Controller [A(v),B(v),C(v),D(v)]

4-41

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0 0;0 1 0; 0 0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix

3D Controller [A(v),B(v),C(v),D(v)]

4-42

corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Inputs and
Outputs

The first input is the measurements.

The second, third and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The output is the actuator demands.

3D Controller [A(v),B(v),C(v),D(v)]

4-43

Assumptions
and Limitations

If the scheduling parameter input to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-44

43D Observer Form [A(v),B(v),C(v),F(v),H(v)]Purpose Implement a gain-scheduled state-space controller in an observer form
depending on three scheduling parameters

Library GNC/Controls

Description The 3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block implements a
gain-scheduled state-space controller defined in the following observer form:

The main application of this block is to implement a controller designed using
H-infinity loop-shaping, one of the design methods supported by the

-Analysis and Synthesis Toolbox.

x· A v() H v()C v()+()x B v()umeas H v() y ydem–()+ +=

udem F v()x=

µ

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-45

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-46

scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

F-matrix(v1,v2,v3)
State-feedback matrix. In the case of 3-D scheduling, the F-matrix should
have five dimensions, the last three corresponding to scheduling variables
v1, v2, and v3. Hence, for example, if the F-matrix corresponding to the
first entry of v1, the first entry of v2, and the first entry of v3 is the identity
matrix, then F(:,:,1,1,1) = [1 0;0 1];.

H-matrix(v1,v2,v3)
observer (output injection) matrix. In the case of 3-D scheduling, the
H-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the H-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then H(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, F, and H.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, F, and H.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, F, and H.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

4-47

Inputs and
Outputs

The first input is the set-point error.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

References Hyde, R. A., “H-infinity Aerospace Control Design - A VSTOL Flight
Application,” Springer Verlag, Advances in Industrial Control Series, 1995.
ISBN 3-540-19960-8. See Chapter 6.

See Also 1D Controller [A(v),B(v),C(v),D(v)]

2D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-48

43D Self-Conditioned [A(v),B(v),C(v),D(v)]Purpose Implement a gain-scheduled state-space controller in a self-conditioned form

Library GNC/Controls

Description The 3D Self-Conditioned [A(v),B(v),C(v),D(v)] block implements a
gain-scheduled state-space controller as defined by the equations

in the self-conditioned form

For the rationale behind this self-conditioned implementation, refer to the
Self-Conditioned [A,B,C,D] block reference. These blocks implement a
gain-scheduled version of the Self-Conditioned [A,B,C,D] block, v being the
vector of parameters over which A, B, C, and D are defined. This type of
controller scheduling assumes that the matrices A, B, C, and D vary smoothly
as a function of v, which is often the case in aerospace applications.

x· A v()x B v()y+=

u C v()x D v()y+=

z· A v() H v()C v()–()z B v() H v()D v()–()e H v()umeas++=

udem C v()z D v()e+=

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-49

Dialog Box

A-matrix(v1,v2,v3)
A-matrix of the state-space implementation. In the case of 3-D scheduling,
the A-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the A-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then A(:,:,1,1,1) = [1 0;0 1];.

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-50

B-matrix(v1,v2,v3)
B-matrix of the state-space implementation. In the case of 3-D scheduling,
the B-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the B-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then B(:,:,1,1,1) = [1 0;0 1];.

C-matrix(v1,v2,v3)
C-matrix of the state-space implementation. In the case of 3-D scheduling,
the C-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the C-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then C(:,:,1,1,1) = [1 0;0 1];.

D-matrix(v1,v2,v3)
D-matrix of the state-space implementation. In the case of 3-D scheduling,
the D-matrix should have five dimensions, the last three corresponding to
scheduling variables v1, v2, and v3. Hence, for example, if the D-matrix
corresponding to the first entry of v1, the first entry of v2, and the first
entry of v3 is the identity matrix, then D(:,:,1,1,1) = [1 0;0 1];.

First scheduling variable (v1) breakpoints
Vector of the breakpoints for the first scheduling variable. The length of v1
should be same as the size of the third dimension of A, B, C, and D.

Second scheduling variable (v2) breakpoints
Vector of the breakpoints for the second scheduling variable. The length of
v2 should be same as the size of the fourth dimension of A, B, C, and D.

Third scheduling variable (v3) breakpoints
Vector of the breakpoints for the third scheduling variable. The length of
v3 should be same as the size of the fifth dimension of A, B, C, and D.

Initial state, x_initial
Vector of initial states for the controller, i.e., initial values for the state
vector, x. It should have length equal to the size of the first dimension of A.

Poles of A(v)-H(v)*C(v)
Vector of the desired poles of A-HC. Note that the poles are assigned to the
same locations for all values of the scheduling parameter v. Hence the

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

4-51

number of pole locations defined should be equal to the length of the first
dimension of the A-matrix.

Inputs and
Outputs

The first input is the measurements.

The second, third, and fourth inputs are the scheduling variables ordered
conforming to the dimensions of the state-space matrices.

The fifth input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

If the scheduling parameter inputs to the block go out of range, then they are
clipped; i.e., the state-space matrices are not interpolated out of range.

This block requires the Control System Toolbox.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Controller [A(v),B(v),C(v),D(v)]

3D Observer Form [A(v),B(v),C(v),F(v),H(v)]

3DoF Animation

4-52

43DoF AnimationPurpose Create a 3-D Handle Graphics animation of a three-degrees-of-freedom object

Library Animation

Description The 3DoF Animation block displays a 3-D animated view of a
three-degrees-of-freedom (3DoF) craft, its trajectory, and its target using
Handle Graphics.

The 3DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Dialog Box

3DoF Animation

4-53

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

-Fixed position

-Cockpit

-Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude and the downrange position
of the target in Earth coordinates.

The second input is a vector containing the altitude and the downrange
position of the craft in Earth coordinates.

The third input is the attitude of the craft.

3DoF Animation

4-54

Examples See the aero_guidance demo for an example of this block.

See Also 6DoF Animation

3DoF (Body Axes)

4-55

43DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion

Library Equations of Motion/3DoF

Description The 3DoF (Body Axes) block considers the rotation in the vertical plane of a
body-fixed coordinate frame about an Earth-fixed reference frame.

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ qw– g θ

w·

sin–

Fz
m
------ qu g θ

q·

cos+ +

M
Iyy

θ· q

=

=

=

=

3DoF (Body Axes)

4-56

Dialog Box

3DoF (Body Axes)

4-57

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

θ0()

α0()

3DoF (Body Axes)

4-58

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial Mass
A scalar value for the mass of the body.

Inertia
A scalar value for the inertia of the body.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth optional input to the block is gravity in the selected units.

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

θ()

q·()

3DoF (Body Axes)

4-59

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

Examples See the aero_guidance demo for an example of this block.

See Also Custom Variable Mass 3DoF (Body Axes)

Incidence & Airspeed

Simple Variable Mass 3DoF (Body Axes)

3x3 Cross Product

4-60

43x3 Cross ProductPurpose Calculate the cross product of two 3-by-1 vectors

Library Utilities/Math Operations

Description The 3x3 Cross Product block computes cross (or vector) product of two vectors,
A and B, by generating a third vector, C, in a direction normal to the plane
containing A and B, and with magnitude equal to the product of the lengths of
A and B multiplied by the sine of the angle between them. The direction of C is
that in which a right-handed screw would move in turning from A to B.

Dialog Box

Inputs and
Outputs

The inputs are two 3-by-1 vectors.

The output is a 3-by-1 vector.

A a1i a2j a3k
B

+ +
b1i b2j b3k+ +

=
=

C A B
i j k

a1 a2 a3

b1 b2 b3

=×=

a2b3 a3b2–()= i a3b1 a1b3–()j a1b2 a2b1–()k+ +

6DoF Animation

4-61

46DoF AnimationPurpose Create a 3-D Handle Graphics® animation of a six-degrees-of-freedom object

Library Animation

Description The 6DoF Animation block displays a 3-D animated view of a
six-degrees-of-freedom (6DoF) craft, its trajectory, and its target using Handle
Graphics.

The 6DoF Animation block uses the input values and the dialog parameters to
create and display the animation.

Dialog Box

6DoF Animation

4-62

Axes limits [xmin xmax ymin ymax zmin zmax]
Specifies the three-dimensional space to be viewed.

Time interval between updates
Specifies the time interval at which the animation is redrawn.

Size of craft displayed
Scale factor to adjust the size of the craft and target.

Static object position
Specifies the altitude, the cross-range position, and the downrange position
of the target.

Enter view
Selects preset Handle Graphics parameters CameraTarget and
CameraUpVector for the figure axes. The dialog parameters Position of
camera and View angle are used to customize the position and field of
view for the selected view. Possible views are

-Fixed position
-Cockpit
-Fly alongside

Position of camera [xc yc zc]
Specifies the Handle Graphics parameter CameraPosition for the figure
axes. Used in all cases except for the Cockpit view.

View angle
Specifies the Handle Graphics parameter CameraViewAngle for the
figure axes in degrees.

Enable animation
When selected, the animation is displayed during the simulation. If not
selected, the animation is not displayed.

Inputs The first input is a vector containing the altitude, the cross-range position, and
the downrange position of the craft in Earth coordinates.

The second input is a vector containing the Euler angles of the craft.

See Also 3DoF Animation

6DoF (Euler Angles)

4-63

46DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The 6DoF (Euler Angles) block considers the rotation of a body-fixed coordinate
frame about an Earth-fixed reference frame . The
origin of the body-fixed coordinate frame is the center of gravity of the body,
and the body is assumed to be rigid, an assumption that eliminates the need to
consider the forces acting between individual elements of mass. The
Earth-fixed reference frame is considered inertial, a simplification that allows
the forces due to the Earth’s motion relative to a star-fixed reference system to
be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame, and the mass
of the body is assumed constant.

Xb Yb Zb, ,() Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
gravity

O

m

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+()=

6DoF (Euler Angles)

4-64

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω()×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

6DoF (Euler Angles)

4-65

Dialog Box

Units
Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

6DoF (Euler Angles)

4-66

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

6DoF (Euler Angles)

4-67

Initial Mass
The mass of the rigid body.

Inertia
The 3-by-3 inertia tensor matrix .

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

Examples See the aeroblk_six_dof demo and Airframe in the aeroblk_HL20 demo for
examples of this block.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

I

6DoF (Euler Angles)

4-68

See Also 6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

6DoF (Quaternion)

4-69

46DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the 6DoF (Euler Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

6DoF (Quaternion)

4-70

Dialog Box

6DoF (Quaternion)

4-71

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Fixed selection conforms to the previously described equations of
motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

6DoF (Quaternion)

4-72

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial Mass
The mass of the rigid body.

Inertia matrix
The 3-by-3 inertia tensor matrix I.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

6DoF (Quaternion)

4-73

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body, and that the mass and inertia are constant.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Acceleration Conversion

4-74

4Acceleration ConversionPurpose Convert from acceleration units to desired acceleration units

Library Utilities/Unit Conversions

Description The Acceleration Conversion block computes the conversion factor from
specified input acceleration units to specified output acceleration units and
applies the conversion factor to the input signal.

The Acceleration Conversion block icon displays the input and output units
selected from the Initial units and Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s2 Meters per second squared

ft/s2 Feet per second squared

km/s2 Kilometers per second squared

in/s2 Inches per second squared

km/h-s Kilometers per hour per second

mph-s Miles per hour per second

Acceleration Conversion

4-75

Inputs and
Outputs

The input is acceleration in initial acceleration units.

The output is acceleration in final acceleration units.

See Also Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Adjoint of 3x3 Matrix

4-76

4Adjoint of 3x3 MatrixPurpose Compute the adjoint matrix for the input matrix

Library Utilities/Math Operations

Description The Adjoint of 3x3 Matrix block computes the adjoint matrix for the input
matrix.

The input matrix has the form of

The adjoint of the matrix has the form of

where

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 adjoint matrix of input matrix.

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

adj A()
M11 M12 M13

M21 M22 M23

M31 M32 M33

=

Mij 1–()i j+
=

Adjoint of 3x3 Matrix

4-77

See Also Create 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

Aerodynamic Forces and Moments

4-78

4Aerodynamic Forces and MomentsPurpose Compute the aerodynamic forces and moments using the aerodynamic
coefficients, dynamic pressure, center of gravity, and center of pressure.

Library Aerodynamics

Description The Aerodynamic Forces and Moments block computes the aerodynamic forces
and moments about the center of gravity.

Dialog Box

Reference area
Specifies the reference area for calculating aerodynamic forces and
moments.

Reference span
Specifies the reference span for calculating aerodynamic moments in
x-axes and z-axes.

Reference length
Specifies the reference length for calculating aerodynamic moment in the
y-axes.

Aerodynamic Forces and Moments

4-79

Inputs and
Outputs

The first input is aerodynamic coefficients (in body axes) for forces and
moments.

The second input is the dynamic pressure.

The third input is the center of gravity.

The fourth input is the center of pressure.

The first output of the block is aerodynamic forces at the center of gravity in
x-axes, y-axes and z-axes.

The second output of the block is aerodynamic moments at the center of gravity
in x-axes, y-axes and z-axes.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

See Also Dynamic Pressure

Estimate Center of Gravity

Moments About CG Due to Forces

Angle Conversion

4-80

4Angle ConversionPurpose Convert from angle units to desired angle units

Library Utilities/Unit Conversions

Description The Angle Conversion block computes the conversion factor from specified
input angle units to specified output angle units and applies the conversion
factor to the input signal.

The Angle Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angle in initial angle units.

The output is angle in final angle units.

deg Degrees

rad Radians

rev Revolutions

Angle Conversion

4-81

See Also Acceleration Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Angular Acceleration Conversion

4-82

4Angular Acceleration ConversionPurpose Convert from angular acceleration units to desired angular acceleration units

Library Utilities/Unit Conversions

Description The Angular Acceleration Conversion block computes the conversion factor
from specified input angular acceleration units to specified output angular
acceleration units and applies the conversion factor to the input signal.

The Angular Acceleration Conversion block icon displays the input and output
units selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angular acceleration in initial angular acceleration units.

The output is angular acceleration in final angular acceleration units.

deg/s2 Degrees per second squared

rad/s2 Radians per second squared

rpm/s Revolutions per minute per second

Angular Acceleration Conversion

4-83

See Also Acceleration Conversion

Angle Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Angular Velocity Conversion

4-84

4Angular Velocity ConversionPurpose Convert from angular velocity units to desired angular velocity units

Library Utilities/Unit Conversions

Description The Angular Velocity Conversion block computes the conversion factor from
specified input angular velocity units to specified output angular velocity units
and applies the conversion factor to the input signal.

The Angular Velocity Conversion block icon displays the input and output
units selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is angular velocity in initial angular velocity units.

The output is angular velocity in final angular velocity units.

deg/s Degrees per second

rad/s Radians per second

rpm Revolutions per minute

Angular Velocity Conversion

4-85

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Calculate Range

4-86

4Calculate RangePurpose Calculate the range between two crafts given their respective positions.

Library GNC/Guidance

Description The Calculate Range block computes the range between two crafts. The
equation used for the range calculation is

Dialog Box

Inputs and
Outputs

The first input is the (x, y and z) position of craft 1.

The second input is the (x, y and z) position of craft 2.

The output is the range from craft 2 and craft 1.

Limitation The calculated range is give the magnitude of the distance but not the direction
therefore it is always positive.

Craft positions are real values.

Range x1 x2–()2 y1 y2–()2 z1 z2–()2
+ +=

COESA Atmosphere Model

4-87

4COESA Atmosphere Model Purpose Implement the 1976 COESA lower atmosphere

Library Environment/Atmosphere

Description The COESA Atmosphere Model block implements the mathematical
representation of the 1976 Committee on Extension to the Standard
Atmosphere (COESA) United States standard lower atmospheric values for
absolute temperature, pressure, density, and speed of sound for the input
geopotential altitude.

Below 32000 meters (approximately 104987 feet), the U.S. Standard
Atmosphere is identical with the Standard Atmosphere of the International
Civil Aviation Organization (ICAO).

The COESA Atmosphere Model block icon displays the input and output units
selected from the Units list.

Dialog Box

COESA Atmosphere Model

4-88

Units
Specifies the input and output units:

Specification
Specify the atmosphere model type from one of the following atmosphere
models. The default is 1976 COESA-extended U.S. Standard Atmosphere.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 m (0 feet) and above the geopotential
altitude of 84852 m (approximately 278386 feet), temperature values are

Height Temperature Speed of
Sound

Air Pressure Air Density

Metric
(MKS)

Meters Degrees
Kelvin

Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per
second

Pound-force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound-force
per square
inch

Slug per
cubic foot

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

COESA Atmosphere Model

4-89

extrapolated linearly and pressure values are extrapolated logarithmically.
Density and speed of sound are calculated using a perfect gas relationship.

Examples See the aeroblk_calibrated model, the aeroblk_indicated model, and
Airframe in the aeroblk_HL20 demo for examples of this block.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also ISA Atmosphere Model

Non-Standard Day 210C

Non-Standard Day 310

Create 3x3 Matrix

4-90

4Create 3x3 MatrixPurpose Create a 3-by-3 matrix from nine input values.

Library Utilities/Math Operations

Description The Create 3x3 Matrix block creates a 3-by-3 matrix from nine input values
where each input corresponds to an element of the matrix.

The output matrix has the form of

Dialog Box

Inputs and
Outputs

The first input is the entry of the first row and first column of the matrix.

The second input is the entry of the first row and second column of the matrix.

The third input is the entry of the first row and third column of the matrix.

The fourth input is the entry of the second row and first column of the matrix.

The fifth input is the entry of the second row and second column of the matrix.

The sixth input is the entry of the second row and third column of the matrix.

The seventh input is the entry of the third row and first column of the matrix.

The eighth input is the entry of the third row and second column of the matrix.

The ninth input is the entry of the third row and third column of the matrix.

The output of the block is a 3-by-3 matrix.

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

Create 3x3 Matrix

4-91

See Also Adjoint of 3x3 Matrix

Determinant of 3x3 Matrix

Invert 3x3 Matrix

Symmetric Inertia Tensor

Custom Variable Mass 3DoF (Body Axes)

4-92

4Custom Variable Mass 3DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion

Library Equations of Motion/3DoF

Description The Custom Variable Mass 3DoF (Body Axes) block considers the rotation in
the vertical plane of a body-fixed coordinate frame about an Earth-fixed
reference frame.

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ m· U

m
----------– qw– g θ

w·

sin–

Fz
m
------ m· w

m
----------– qu g θ

q·

cos+ +

M Iyy
· q–

Iyy

θ
·

q

=

=

=

=

Custom Variable Mass 3DoF (Body Axes)

4-93

Dialog Box

Custom Variable Mass 3DoF (Body Axes)

4-94

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

θ0()

α0()

Custom Variable Mass 3DoF (Body Axes)

4-95

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Gravity Source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth input to the block is the rate of change of mass, .

The fifth input to the block is the mass, (m).

The sixth input to the block is the rate of change of inertia tensor matrix, .

The seventh input to the block is the inertia tensor matrix, (Iyy).

The eighth optional input to the block is gravity in the selected units.

The first output from the block is the pitch attitude, in radians .

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

m()·

Iyy
·()

θ()

q·()

Custom Variable Mass 3DoF (Body Axes)

4-96

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

See Also 3DoF (Body Axes)

Incidence & Airspeed

Simple Variable Mass 3DoF (Body Axes)

Custom Variable Mass 6DoF (Euler Angles)

4-97

4Custom Variable Mass 6DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The Custom Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame about an Earth-fixed reference
frame . The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

Xb Yb Zb, ,()
Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
gravity

O

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+() m· Vb+=

Custom Variable Mass 6DoF (Euler Angles)

4-98

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω() I·ω+×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

I·
Ixx

· Ixy
·

– Ixz–
·

Iyx
·

– Iyy
· Iyz–

·

Izx–
· Izy–

· Izz
·

=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

Custom Variable Mass 6DoF (Euler Angles)

4-99

Dialog Box

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

Custom Variable Mass 6DoF (Euler Angles)

4-100

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations
of motion.

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Custom Variable Mass 6DoF (Euler Angles)

4-101

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

Custom Variable Mass 6DoF (Euler Angles)

4-102

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF (Quaternion)

4-103

4Custom Variable Mass 6DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the Custom Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

Custom Variable Mass 6DoF (Quaternion)

4-104

Dialog Box

Units
Specifies the input and output units:

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Custom Variable Mass 6DoF (Quaternion)

4-105

Mass Type
Select the type of mass to use:

The Custom Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Custom Variable Mass 6DoF (Quaternion)

4-106

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The fourth input is a scalar containing the mass

The fifth input is a 3-by-3 matrix for the rate of change of inertia tensor matrix.

The sixth input is a 3-by-3 matrix for the inertia tensor matrix.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

Custom Variable Mass 6DoF (Quaternion)

4-107

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Euler Angles)

Simple Variable Mass 6DoF (Quaternion)

Density Conversion

4-108

4Density ConversionPurpose Convert from density units to desired density units

Library Utilities/Unit Conversions

Description The Density Conversion block computes the conversion factor from specified
input density units to specified output density units and applies the conversion
factor to the input signal.

The Density Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is density in initial density units.

The output is density in final density units.

lbm/ft3 Pound mass per cubic foot

kg/m3 Kilograms per cubic meter

slug/ft3 Slugs per cubic foot

lbm/in3 Pound mass per cubic inch

Density Conversion

4-109

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Determinant of 3x3 Matrix

4-110

4Determinant of 3x3 MatrixPurpose Compute the determinant for the input matrix

Library Utilities/Math Operations

Description The Determinant of 3x3 Matrix block computes the determinant for the input
matrix.

The input matrix has the form of

The determinant of the matrix has the form of

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 matrix.

The output of the block is the determinant of input matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Invert 3x3 Matrix

A

A11 A12 A13

A21 A22 A23

A31 A32 A33

=

det A() A11 A22A33 A23A32–() A12 A21A33 A23A31–()
A13 A21A32 A22A31–()

+–=

Direction Cosine Matrix to Euler Angles

4-111

4Direction Cosine Matrix to Euler AnglesPurpose Convert direction cosine matrix to Euler angles

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Euler Angles block converts a 3-by-3 direction
cosine matrix (DCM) into three Euler rotation angles. The DCM matrix
performs the coordinate transformation of a vector in inertial axes

 into a vector in body axes . The order of the axis
rotations required to bring into coincidence with
is first a rotation about through the roll angle to axes .
Second a rotation about through the pitch angle to axes ,
and finally a rotation about through the yaw angle to axes

.

Combining the three axis transformation matrices defines the following DCM.

To determine Euler angles from the DCM, the following equations are used:

ox0 oy0 oz0,,() ox3 oy3 oz3,,()
ox3 oy3 oz3,,() ox0 oy0 oz0,,()

ox3 φ() ox2 oy2 oz2,,()
oy2 θ() ox1 oy1 oz1,,()

oz1 ψ()
ox0 oy0 oz0,,()

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos+() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

φ DCM 2 3,()
DCM 3 3,()
------------------------------ 
 atan=

θ DCM 1 3,()–()asin=

ψ DCM 1 2,()
DCM 1 1,()
------------------------------ 
 atan=

Direction Cosine Matrix to Euler Angles

4-112

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of Euler angles.

Assumptions
and Limitations

This implementation generates a pitch angle that lies between degrees,
and roll and yaw angles that lie between degrees.

See Also Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

90±
180±

Direction Cosine Matrix to Quaternions

4-113

4Direction Cosine Matrix to QuaternionsPurpose Convert direction cosine matrix to quaternion vector

Library Utilities/Axes Transformations

Description The Direction Cosine Matrix to Quaternions block transforms a 3-by-3
direction cosine matrix (DCM) into a four-element unit quaternion vector
(q0,q1,q2,q3). The DCM performs the coordinate transformation of a vector in
inertial axes to a vector in body axes.

The DCM is defined as a function of a unit quaternion vector by the following:

Using this representation of the DCM, there is a number of calculations to
arrive at the correct quaternion. The first of these is to calculate the trace of
the DCM to determine which algorithms are used. If the trace is greater that
zero, the quaternion can be automatically calculated. When the trace is less
than or equal to zero, the major diagonal element of the DCM with the greatest
value must be identified to determine the final algorithm used to calculate the
quaternion. Once the major diagonal element is identified, the quaternion is
calculated. For a detailed view of these algorithms, look under the mask of this
block.

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 direction cosine matrix.

The output is a 4-by-1 quaternion vector.

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

Direction Cosine Matrix to Quaternions

4-114

See Also Direction Cosine Matrix to Euler Angles

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

Discrete Wind Gust Model

4-115

4Discrete Wind Gust ModelPurpose Generate discrete wind gust

Library Environment/Wind

Description The Discrete Wind Gust Model block implements a wind gust of the standard
“1-cosine” shape. This block implements the mathematical representation in
the Military Specification MIL-F-8785C [1]. The gust is applied to each axis
individually, or to all three axes at once. The user specifies the gust amplitude
(the increase in wind speed generated by the gust), the gust length (length, in
meters, over which the gust builds up) and the gust start time.

The Discrete Wind Gust Model block can represent the wind speed in units of
feet per second, meters per second, or knots.

The following figure shows the shape of the gust with a start time of zero. The
parameters that govern the gust shape are indicated on the diagram.

The discrete gust can be used singly or in multiples to assess airplane response
to large wind disturbances.

Discrete Wind Gust Model

4-116

The mathematical representation of the discrete gust is

where Vm is the gust amplitude, dm is the gust length, x is the distance
traveled, and Vwind is the resultant wind velocity in the body axis frame.

Dialog Box

Vwind

0 x 0<

Vm
2

-------- 1 πx
dm
-------- 
 cos– 

  0 x dm≤ ≤

Vm x dm>









=

Discrete Wind Gust Model

4-117

Units
Define the units of wind gust.

Gust in u-axis
Select to apply the wind gust to the u-axis in the body frame.

Gust in v-axis
Select to apply the wind gust to the v-axis in the body frame.

Gust in w-axis
Select to apply the wind gust to the w-axis in the body frame.

Gust start time (sec)
The model time, in seconds, at which the gust begins.

Gust length [dx dy dz] (m or f)
The length, in meters or feet (depending on the choice of units), over which
the gust builds up in each axis. These values must be positive.

Gust amplitude [ug vg wg] (m/s, f/s, or knots)
The magnitude of the increase in wind speed caused by the gust in each
axis. These values may be positive or negative.

Inputs and
Outputs

The input is airspeed in units selected.

The output is wind speed in units selected.

Examples See Airframe in the aeroblk_HL20 demo for an example of this block.

References U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Dryden Wind Turbulence Model (Continuous), Wind Shear Model

Wind Altitude

Metric (MKS) Meters/second Meters

English (Velocity
in ft/s)

Feet/second Feet

English (Velocity
in kts)

Knots Feet

Dryden Wind Turbulence Model (Continuous)

4-118

4Dryden Wind Turbulence Model (Continuous)Purpose Generate continuous wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Continuous) block uses the Dryden
spectral representation to add turbulence to the aerospace model by passing
band-limited white noise through appropriate forming filters. This block
implements the mathematical representation in the Military Specification
MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. The following table displays
the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

 Φu ω()

 Φpg
ω()

2σu
2Lu

πV
------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅

σw
2

VLw

0.8
πLw
4b

----------- 
 

1
3

1 4bω
πV

----------- 
  2

+

-----------------------------⋅
σw

2

2VLw

0.8
2πLw

4b
--------------- 
 

1
3

1 4bw
πV

------------ 
  2

+

--------------------------------⋅

Dryden Wind Turbulence Model (Continuous)

4-119

The variable b represents the aircraft wingspan. The variables
represent the turbulence scale lengths. The variables σu, σv, σw represent the
turbulence intensities.

Lateral

Vertical

 MIL-F-8785C MIL-HDBK-1797

 Φv ω()

Φr ω()

σv
2Lv
πV

1 3 Lv

ω
V
----()

2
+

1 Lv
ω
V
----()

2
+[]

2
-----------------------------------⋅

2σv
2Lv

πV

1 12 Lv
ω
V
----()

2
+

1 4 Lv
ω
V
----()

2
+[]

2
---------------------------------------⋅

ω
V
---- 
 +−

2

1 3bω
πV

----------- 
  2

+

----------------------------- Φv ω()⋅

ω
V
---- 
 +−

2

1 3bω
πV

----------- 
  2

+

----------------------------- Φv ω()⋅

 Φw ω()
σw

2Lw
πV

1 3 Lw

ω
V
----()

2
+

1 Lw
ω
V
----()

2
+[]

2
------------------------------------⋅

2σw
2Lw

πV

1 12 Lw
ω
V
----()

2
+

1 4 Lw
ω
V
----()

2
+[]

2
--⋅

 Φq ω()

ω
V
---- 
 ±

2

1 4bω
πV

----------- 
  2

+

----------------------------- Φw ω()⋅

ω
V
---- 
 ±

2

1 4bω
πV

----------- 
  2

+

----------------------------- Φw ω()⋅

Lu Lv Lw, ,

Dryden Wind Turbulence Model (Continuous)

4-120

The spectral density definitions of turbulence angular rates are defined in the
specifications as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

, multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters. The forming
filters are derived from the spectral square roots of the spectrum equations.

Vertical Lateral

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------–=

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------=

pg
∂wg
∂y

----------–= qg
∂wg
∂x

----------–= rg
∂vg
∂x
---------=

Φpg
ω()

Φw ω()

Φq ω() Φ– r ω()

Φq ω() Φr ω()

Φ– q ω() Φr ω()

Dryden Wind Turbulence Model (Continuous)

4-121

The following table displays the transfer functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

Lateral

Vertical

 Hu s()

 Hp s()

σu
2Lu
πV

------------ 1
1

Lu
V

--------s+
------------------- σu

2Lu
πV

------------ 1
1

Lu
V

--------s+

σw
0.8
V

π
4b()

----------- 
  1 6⁄

Lw
1 3⁄ 1 4b

πV
------- 
  s+ 

 
-- σw

0.8
V

π
4b()

----------- 
  1 6⁄

2Lw()1 3⁄ 1 4b
πV
------- 
  s+ 

 

 Hv s()

 Hr s()

σv
Lv
πV

1
3Lv
V

--------------s+

1
Lv
V

-------s+()
2

--------------------------- σv
2Lv
πV

1

2 3Lv
V

------------------s+

1
2Lv

V
-------------s+ 

 
2

s
V
----+−

1 3b
πV
------- 
  s+ 

 
------------------------------- Hv s()⋅

s
V
----+−

1 3b
πV
------- 
  s+ 

 
------------------------------- Hv s()⋅

Hw s()

 Hq s()

σw
Lw
πV

1
3Lw
V

---------------s+

1
Lw
V

---------s+()
2

---------------------------- σw
2Lw

πV

1
2 3Lw

V
-------------------s+

1
2Lw

V
--------------s+ 

 
2

s
V
----±

1 4b
πV
------- 
  s+ 

 
------------------------------- Hw s()⋅

s
V
----±

1 4b
πV
------- 
  s+ 

 
------------------------------- Hw s()⋅

Dryden Wind Turbulence Model (Continuous)

4-122

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The military specifications result in the same transfer function after
evaluating the turbulence scale lengths. The differences in turbulence scale
lengths and turbulence transfer functions balance offset.

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low
altitudes, where is the altitude in feet, are represented in the following table:

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical

 MIL-F-8785C MIL-HDBK-1797

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

2Lw h

Lu 2Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Dryden Wind Turbulence Model (Continuous)

4-123

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

 MIL-F-8785C MIL-HDBK-1797

Lu Lv Lw 1750= = = ft Lu 2Lv 2Lw 1750= = = ft

σu σv σw= =

Dryden Wind Turbulence Model (Continuous)

4-124

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Dryden Wind Turbulence Model (Continuous)

4-125

Dialog Box

Dryden Wind Turbulence Model (Continuous)

4-126

Units
Define the units of wind speed due to the turbulence.

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions.

Model type
Select the wind turbulence model to use.

Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

Model Description

Continuous Von Kármán (+q -r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von
Kármán velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Continuous)

4-127

The Continuous Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

Model Description

Dryden Wind Turbulence Model (Continuous)

4-128

Scale length at medium/high altitudes (m)
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (sec)
The sample time at which the unit variance white noise signal is generated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Continuous)

4-129

Assumptions
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example of this
block.

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., “Gust Loads on Aircraft: Concepts and Applications,” AIAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Dryden Wind Turbulence Model (Continuous)

4-130

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

Von Karman Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

4-131

4Dryden Wind Turbulence Model (Discrete)Purpose Generate continuous wind turbulence with the Dryden velocity spectra

Library Environment/Wind

Description The Dryden Wind Turbulence Model (Discrete) block uses the Dryden spectral
representation to add turbulence to the aerospace model by using band-limited
white noise with appropriate digital filter finite difference equations. This
block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. The following table displays
the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

 Φu ω()

 Φp ω()

2σu
2Lu

πV
------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅
2σu

2Lu
πV

------------------ 1

1 Lu
ω
V
----()

2
+

----------------------------⋅

σw
2

VLw

0.8
πLw
4b

----------- 
 

1
3

1 4bω
πV

----------- 
  2

+

-----------------------------⋅
σw

2

2VLw

0.8
2πLw

4b
--------------- 
 

1
3

1 4bw
πV

------------ 
  2

+

--------------------------------⋅

Dryden Wind Turbulence Model (Discrete)

4-132

The variable b represents the aircraft wingspan. The variables
represent the turbulence scale lengths. The variables σu, σv, σw represent the
turbulence intensities.

Lateral

Vertical

 MIL-F-8785C MIL-HDBK-1797

 Φv ω()

 Φr ω()

σv
2Lv
πV

1 3 Lv

ω
V
----()

2
+

1 Lv
ω
V
----()

2
+[]

2
-----------------------------------⋅

2σv
2Lv

πV

1 12 Lv
ω
V
----()

2
+

1 4 Lv
ω
V
----()

2
+[]

2
---------------------------------------⋅

ω
V
---- 
 +−

2

1 3bω
πV

----------- 
  2

+

----------------------------- Φv ω()⋅

ω
V
---- 
 +−

2

1 3bω
πV

----------- 
  2

+

----------------------------- Φv ω()⋅

 Φw ω() σw
2Lw
πV

1 3 Lw

ω
V
----()

2
+

1 Lw
ω
V
----()

2
+[]

2
------------------------------------⋅

2σw
2Lw

πV

1 12 Lw
ω
V
----()

2
+

1 4 Lw
ω
V
----()

2
+[]

2
--⋅

 Φq ω()
ω
V
---- 
 ±

2

1 4bω
πV

----------- 
  2

+

----------------------------- Φw ω()⋅

ω
V
---- 
 ±

2

1 4bω
πV

----------- 
  2

+

----------------------------- Φw ω()⋅

Lu Lv Lw, ,

Dryden Wind Turbulence Model (Discrete)

4-133

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

, multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra:

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is used in the digital filter finite difference
equations.

Vertical Lateral

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------–=

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------=

pg
∂wg
∂y

----------–= qg
∂wg
∂x

----------–= rg
∂vg
∂x
---------=

Φp ω()

Φw ω()

Φq ω() Φ– r ω()

Φq ω() Φr ω()

Φ– q ω() Φr ω()

Dryden Wind Turbulence Model (Discrete)

4-134

The following table displays the digital filter finite difference equations:

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

Lateral

Vertical

ug

pg

1 V
Lu
-------T– 

 ug 2 V
Lu
-------T

σu
ση
------η1+ 1 V

Lu
-------T– 

 ug 2 V
Lu
-------T

σu
ση
------η1+

1 2.6
Lwb

---------------T– 
 pg

2 2.6
Lwb

---------------T

0.95

2Lwb23
-----------------------σw

ση
-------------------------------η4

+ 1 2.6
2Lwb

-------------------T– 
 pg

2 2.6
2Lwb

-------------------T

1.9
2Lwb

-------------------σw

ση
---------------------------η4

+

vg

rg

1 V
Lu
-------T– 

  vg 2 V
Lu
-------T

σv
ση
------η2+ 1 V

Lu
-------T– 

  vg 2 V
Lu
-------T

σv
ση
------η2+

1 πV
3b
-------T– 

  rg
π

3b
-------+− vg vgpast

–() 1 πV
3b
-------T– 

  rg
π

3b
-------+− vg vgpast

–()

wg

qg

1 V
Lu
-------T– 

 wg 2 V
Lu
-------T

σw
ση
-------η3+ 1 V

Lu
-------T– 

 wg 2 V
Lu
-------T

σw
ση
-------η3+

1 πV
4b
-------T– 

 qg
π

4b
-------± wg wgpast

–() 1 πV
4b
-------T– 

 qg
π

4b
-------± wg wgpast

–()

Dryden Wind Turbulence Model (Discrete)

4-135

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low
altitudes, where is the altitude in feet, are represented in the following table:

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15
knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

 MIL-F-8785C MIL-HDBK-1797

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

2Lw h

Lu 2Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Dryden Wind Turbulence Model (Discrete)

4-136

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates.

 MIL-F-8785C MIL-HDBK-1797

Lu Lv Lw 1750= = = ft Lu 2Lv 2Lw 1750= = = ft

σu σv σw= =

Dryden Wind Turbulence Model (Discrete)

4-137

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Dialog Box

Dryden Wind Turbulence Model (Discrete)

4-138

Units
Define the units of wind speed due to the turbulence.

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

Model Description

Continuous Von Kármán (+q -r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von
Kármán velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Dryden Wind Turbulence Model (Discrete)

4-139

The Discrete Dryden selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 6 meters (20 feet) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 6 meters (20 feet) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

Model Description

Dryden Wind Turbulence Model (Discrete)

4-140

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise and discrete filter sample time (sec)
The sample time at which the unit variance white noise signal is generated
and at which the discrete filters are updated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is altitude, in units selected.

The second input is aircraft speed, in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Dryden Wind Turbulence Model (Discrete)

4-141

Assumptions
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, is small
relative to the aircraft’s ground speed.

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., “Gust Loads on Aircraft: Concepts and Applications,” AIAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Dryden Wind Turbulence Model (Discrete)

4-142

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

See Also Dryden Wind Turbulence Model (Continuous)

Von Karman Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Dynamic Pressure

4-143

4Dynamic PressurePurpose Compute dynamic pressure using velocity and air density

Library Flight Parameters

Description The Dynamic Pressure block computes dynamic pressure.

Dynamic pressure is defined as

where is air density and V is velocity.

Dialog Box

Inputs and
Outputs

The first input is velocity vector.

The second input is air density.

The output of the block is dynamic pressure.

Examples See the Airframe subsystem in the aeroblk_HL20 demo for an example of this
block.

See Also Aerodynamic Forces and Moments

Mach Number

q 1
2
---ρV2

=

ρ

Estimate Center of Gravity

4-144

4Estimate Center of GravityPurpose Calculate the center of gravity location

Library Mass Properties

Description The Estimate Center of Gravity block calculates the center of gravity location
and the rate of change of the center of gravity.

Linear interpolation is used to estimate the location of center of gravity as a
function of mass. The rate of change of center of gravity is a linear function of
rate of change of mass.

Dialog Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full center of gravity
Specifies the center of gravity at gross mass of the craft.

Estimate Center of Gravity

4-145

Empty center of gravity
Specifies the center of gravity at empty mass of the craft.

Inputs and
Outputs

The first input is the mass.

The second input is the rate of change of mass.

The first output is the center of gravity location.

The second output is the rate of change of center of gravity location.

See Also Aerodynamic Forces and Moments

Estimate Inertia Tensor

Moments About CG Due to Forces

Estimate Inertia Tensor

4-146

4Estimate Inertia TensorPurpose Calculate the inertia tensor

Library Mass Properties

Description The Estimate Inertia Tensor block calculates the inertia tensor and the rate of
change of the inertia tensor.

Linear interpolation is used to estimate the inertia tensor as a function of
mass. The rate of change of the inertia tensor is a linear function of rate of
change of mass.

Dialog Box

Full mass
Specifies the gross mass of the craft.

Empty mass
Specifies the empty mass of the craft.

Full inertia matrix
Specifies the inertia tensor at gross mass of the craft.

Estimate Inertia Tensor

4-147

Empty inertia matrix
Specifies the inertia tensor at empty mass of the craft.

Inputs and
Outputs

The first input is mass.

The second input is rate of change of mass.

The first output is inertia tensor.

The second output is rate of change of inertia tensor.

See Also Estimate Center of Gravity

Symmetric Inertia Tensor

Euler Angles to Direction Cosine Matrix

4-148

4Euler Angles to Direction Cosine MatrixPurpose Convert Euler angles to direction cosine matrix

Library Utilities/Axes Transformations

Description The Euler Angles to Direction Cosine Matrix block converts the three Euler
rotation angles into a 3-by-3 direction cosine matrix (DCM). The DCM matrix
performs the coordinate transformation of a vector in inertial axes

 into a vector in body axes . The order of the axis
rotations required to bring into coincidence with
is first a rotation about through the roll angle to axes .
Second a rotation about through the pitch angle to axes ,
and finally a rotation about through the yaw angle to
axes .

Combining the three axis transformation matrices defines the following DCM.

ox0 oy0 oz0,,() ox3 oy3 oz3,,()
ox3 oy3 oz3,,() ox0 oy0 oz0,,()

ox3 φ() ox2 oy2 oz2,,()
oy2 θ() ox1 oy1 oz1,,()

oz1 ψ()
ox0 oy0 oz0,,()

ox3

oy3

oz3

DCM

ox0

oy0

oz0

=

ox3

oy3

oz3

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

ψcos ψsin 0
ψsin– ψcos 0

0 0 1

ox0

oy0

oz0

=

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos+() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

Euler Angles to Direction Cosine Matrix

4-149

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 3-by-3 direction cosine matrix.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

Euler Angles to Quaternions

4-150

4Euler Angles to QuaternionsPurpose Convert Euler angles to a quaternion vector

Library Utilities/Axes Transformations

Description The Euler Angles to Quaternions block converts the rotation described by the
three Euler angles (roll, pitch, yaw) into the four-element quaternion vector
(q0,q1,q2,q3).

A quaternion vector represents a rotation about a unit vector ()
through an angle . A unit quaternion itself has unit magnitude, and can be
written in the following vector format.

An alternative representation of a quaternion is as a complex number,

where, for the purposes of multiplication,

The benefit of representing the quaternion in this way is the ease with which
the quaternion product can represent the resulting transformation after two or
more rotations. The quaternion to represent the rotation through the three
Euler angles is given below.

Expanding the preceding representation gives the four quaternion elements
following.

µx µy µz
θ

q

q0

q1

q2

q3

θ 2⁄()cos
θ 2⁄()µxsin

θ 2⁄()µysin

θ 2⁄()µzsin

= =

q q0 iq1 jq2 kq3+ + +=

i2 j2 k2 1–= = =

ij ji– k= =

jk kj– i
ki

,

ik– j
= =

= =

q qφqθqψ
φ
2
--- 
  i φ

2
--- 
 sin–cos 

  θ
2
--- 
  j θ

2
--- 
 sin–cos 

  ψ
2
---- 
  k ψ

2
---- 
 sin–cos 

 = =

Euler Angles to Quaternions

4-151

Dialog Box

Inputs and
Outputs

The input is a 3-by-1 vector of Euler angles.

The output is a 4-by-1 quaternion vector.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Quaternions to Direction Cosine Matrix

Quaternions to Euler Angles

q0

q1

q2

q3

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
  φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsinsin+coscoscos

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 cos φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sinsincos–cossin

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 cos φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 sincossin+sincos

φ
2
--- 
  θ

2
--- 
  ψ

2
---- 
 sin φ

2
--- 
  θ

2
--- 
  ψ

2
---- 
 cossinsin–coscos

=

Force Conversion

4-152

4Force ConversionPurpose Convert from force units to desired force units

Library Utilities/Axes Transformations

Description The Force Conversion block computes the conversion factor from specified
input force units to specified output force units and applies the conversion
factor to the input signal.

The Force Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is force in initial force units.

The output is force in final force units.

lbf Pound force

N Newtons

Force Conversion

4-153

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Gain Scheduled Lead-Lag

4-154

4Gain Scheduled Lead-LagPurpose Implement a first-order lead-lag with gain-scheduled coefficients

Library GNC/Controls

Description The Gain Scheduled Lead-Lag block implements a first-order lag of the form

where e is the filter input, and u the filter output.

The coefficients a and b are inputs to the block, and hence can be made
dependent on flight condition or operating point. For example, they could be
produced from the Look-Up Table (n-D) Simulink block.

Dialog Box

Initial state, x_initial
The initial internal state for the filter x_initial. Given this initial state,
the initial output is given by

Inputs and
Outputs

The first input is the filter input.

The second input is the numerator coefficient.

The third input is the denominator coefficient.

The output is the filter output

u 1 as+
1 bs+
----------------e=

u t 0=
xinitial ae+

b
--------------------------------=

Horizontal Wind Model

4-155

4Horizontal Wind ModelPurpose Transform horizontal wind into body-axes coordinates

Library Environment/Wind

Description The Horizontal Wind Model block computes the wind velocity in body-axes
coordinates.

The wind is specified by wind speed and wind direction in Earth axes. The
speed and direction can be constant or variable over time. The direction of the
wind is in degrees clockwise from the direction of the Earth x-axis (north). The
wind direction is defined as the direction from which the wind is coming. Using
the direction cosine matrix (DCM), the wind velocities are transformed into
body-axes coordinates.

Dialog Box

Units
Specifies the input and output units:

Wind Speed Wind Velocity

Metric (MKS) Meters per second Meters per second

English (Velocity in ft/s) Feet per second Feet per second

English (Velocity in kts) Knots Knots

Horizontal Wind Model

4-156

Wind speed source
Specify source of wind speed:

Wind speed at altitude (m/s)
Constant wind speed used if internal wind speed source is selected.

Wind direction source
Specify source of wind direction:

Wind direction at altitude (degrees clockwise from north)
Constant wind direction used if internal wind direction source is selected.
The direction of the wind is in degrees clockwise from the direction of the
Earth x-axis (north). The wind direction is defined as the direction from
which the wind is coming.

Inputs and
Outputs

The first input is direction cosine matrix.

The second optional input is the wind speed in selected units.

The third optional input is the wind direction in degrees.

The output of the block is the wind velocity in body-axes, in selected units.

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

External Variable wind speed input to block

Internal Constant wind speed specified in mask

External Variable wind direction input to block

Internal Constant wind direction specified in mask

Ideal Airspeed Correction

4-157

4Ideal Airspeed CorrectionPurpose Calculate equivalent airspeed (EAS), calibrated airspeed (CAS), or true
airspeed (TAS) from each other

Library Flight Parameters

Description The Ideal Airspeed Correction block calculates one of the following airspeeds:
equivalent airspeed (EAS), calibrated airspeed (CAS), or true airspeed (TAS),
from one of the other two airspeeds.

Three equations are used to implement the Ideal Airspeed Correction block.
The first equation shows TAS as a function of EAS, relative pressure ratio at
altitude (δ), and speed of sound at altitude (a).

Using the compressible form of Bernoulli’s equation and assuming isentropic
conditions, the last two equations for EAS and CAS are derived.

In order to generate a correction table and its approximate inverse, these two
equations were solved for dynamic pressure (q). Having values of q by a
function of EAS and ambient pressure at altitude (P) or by a function of CAS,
allows the two equations to be solved using the other’s solution for q, thus
creating a solution for EAS that depends on P and CAS and a solution for CAS
that depends on P and EAS.

TAS EAS a×
a0 δ

-----------------------=

EAS 2γP
γ 1–()ρ0

----------------------- q
P
---- 1+ 
  γ 1–() γ⁄

1–=

CAS
2γP0

γ 1–()ρ0
----------------------- q

P0
------ 1+ 
  γ 1–() γ⁄

1–=

Ideal Airspeed Correction

4-158

Dialog Box

Units
Specifies the input and output units:

Airspeed input
Specify the airspeed input type:

Airspeed
Input

Speed of
Sound

Air Pressure Airspeed
Output

Metric (MKS) Meters per
second

Meters per
second

Pascal Meters per
second

English (Velocity
in ft/s)

Feet per
second

Feet per
second

Pound force per
square inch

Feet per
second

English (Velocity
in kts)

Knots Knots Pound force per
square inch

Knots

TAS True airspeed

EAS Equivalent airspeed

CAS Calibrated airspeed

Ideal Airspeed Correction

4-159

Airspeed output
Specify the airspeed output type:

Action for out of range input
Specify if an out of range input (supersonic airspeeds) invokes a warning,
an error, or no action.

Inputs and
Outputs

The first input is the selected airspeed in the selected units.

The second input is the speed of sound in the selected units.

The third input is the static pressure in the selected units.

The output of the block is the selected airspeed in the selected units.

Assumptions
and Limitations

This block assumes that the air flow is compressible, isentropic (subsonic flow),
dry air with constant specific heat ratio, γ.

Examples See the aeroblk_indicated model and the aeroblk_calibrated model for
examples of this block.

References Lowry, J. T., “Performance of Light Aircraft,” AIAA Education Series,
Washington, DC, 1999.

“Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney,
August, 1986.

Velocity Input Velocity Output

TAS EAS (Equivalent airspeed)

CAS (Calibrated airspeed)

EAS TAS (True airspeed)

CAS (Calibrated airspeed)

CAS TAS (True airspeed)

EAS (Equivalent airspeed)

Incidence & Airspeed

4-160

4Incidence & AirspeedPurpose Calculate incidence and air speed

Library Flight Parameters

Description The Incidence & Airspeed block supports the 3DoF equations of motion model
by calculating the angle between the velocity vector and the body, and also the
total air speed from the velocity components in the body-fixed coordinate
frame.

Dialog Box

Inputs and
Outputs

The input to the block is the two-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle, in radians.

The second output is the air speed of the body.

Examples See the aeroblk_guidance model and the aero_guidance_airframe model for
examples of this block.

See Also 3DoF (Body Axes)

Incidence, Sideslip & Airspeed

α w
u
---- 
 

V

atan

u2 w2
+

=

=

Incidence, Sideslip & Airspeed

4-161

4Incidence, Sideslip & AirspeedPurpose Calculate incidence, sideslip, and air speed

Library Flight Parameters

Description The Incidence, Sideslip & Airspeed block supports the 6DoF (Euler Angles) and
6DoF (Quaternion) models by calculating the angles between the velocity
vector and the body, and also the total air speed from the velocity components
in the body-fixed coordinate frame.

Dialog Box

Inputs and
Outputs

The input to the block is the three-element vector containing the velocity of the
body resolved into the body-fixed coordinate frame.

The first output of the block is the incidence angle in radians.

The second output of the block is the sideslip angle in radians.

The third output is the air speed of the body.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

Incidence & Airspeed

Simple Variable Mass 6DoF (Euler Angles)

α w
u
---- 
 

β v
V
---- 
 

V

asin=

atan

u2 v2 w+
2

+

=

=

Incidence, Sideslip & Airspeed

4-162

Simple Variable Mass 6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Interpolate Matrix(x)

4-163

4Interpolate Matrix(x)Purpose Return an interpolated matrix for given input x

Library GNC/Controls

Description The Interpolate Matrix(x) block interpolates a one-dimensional array of
matrices.

This one-dimensional case assumes a matrix M is defined at a discrete number
of values of an independent variable x = [x1 x2 x3 ... xi xi+1 ... xn]. Then for
xi < x < xi+1, the block output is given by

where the interpolation fraction is defined as

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be three dimensional, the first two
dimensions corresponding to the matrix at each value of x. For example, if
you have three matrices A, B, and C defined at x = 0, x = 0.5, and
x = 1.0, then the input matrix is given by

matrix(:,:,1) = A;

matrix(:,:,2) = B;

matrix(:,:,3) = C;

Inputs and
Outputs

The first input is the first independent variable.

The output is the interpolated matrix.

1 λ–()M xi() λM xi 1+()+

λ x xi–() xi 1+ xi–()⁄=

Interpolate Matrix(x)

4-164

Assumptions
and Limitations

This block must be driven from the Simulink PreLook-up Index Search block.

Examples See the following Aerospace Blockset blocks: 1D Controller
[A(v),B(v),C(v),D(v)], 1D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 1D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x,y)

Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y)

4-165

4Interpolate Matrix(x,y)Purpose Return an interpolated matrix for given inputs x and y

Library GNC/Controls

Description The Interpolate Matrix(x,y) block interpolates a two-dimensional array of
matrices.

This two-dimensional case assumes the matrix is defined as a function of two
independent variables, x = [x1 x2 x3 ... xi xi+1 ... xn] and y = [y1 y2 y3 ... yj yj+1
... ym]. For given values of x and y, four matrices are interpolated. Then for
xi < x < xi+1 and yj < y < yj+1, the output matrix is given by

where the two interpolation fractions are denoted by

and

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be four dimensional, the first two
dimensions corresponding to the matrix at each value of x and y. For
example, if you have four matrices A, B, C, and D defined at
(x = 0.0,y = 1.0), (x = 0.0,y = 3.0), (x = 1.0,y = 1.0) and
(x = 1.0,y = 3.0), then the input matrix is given by

1 λy–() 1 λx–()M xi yj,() λxM xi 1+ yj,()+[]

λy 1 λx–()M xi yj 1+,() λxM xi 1+ yj 1+,()+[]

+

λx x xi–() xi 1+ xi–()⁄=

λy y yj–() yj 1+ yj–()⁄=

Interpolate Matrix(x,y)

4-166

matrix(:,:,1,1) = A;

matrix(:,:,1,2) = B;

matrix(:,:,2,1) = C;

matrix(:,:,2,2) = D;

Inputs and
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The output is the interpolated matrix.

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

Examples See the following Aerospace Blockset blocks: 2D Controller
[A(v),B(v),C(v),D(v)], 2D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 2D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y,z)

Interpolate Matrix(x,y,z)

4-167

4Interpolate Matrix(x,y,z)Purpose Return an interpolated matrix for given inputs x, y, and z

Library GNC/Controls

Description The Interpolate Matrix(x,y,z) block interpolates a three-dimensional array of
matrices.

This three-dimensional case assumes the matrix is defined as a function of
three independent variables

For given values of x, y, and z, eight matrices are interpolated. Then for

the output matrix is given by

where the three interpolation fractions are denoted by

In the three-dimensional case, the interpolation is carried out first on x, then
y, and finally z.

x = [x1 x2 x3 ... xi xi+1 ... xn], y = [y1 y2 y3 ... yj yj+1 ... ym]

z = [z1 z2 z3 ... zk zk+1 ... zp]

xi < x < xi+1, yj < y < yj+1

zk < z < zk+1

1 λ– z() 1 λy–() 1 λx–()M xi yj zk, ,() λxM xi 1+ yj zk, ,()+[]

λy 1 λx–()M xi yj 1+ zk,,() λxM xi 1+ yj 1+ zk,,()+[]

+{

}

λz 1 λy–() 1 λx–()M xi yj zk 1+, ,() λxM xi 1+ yj zk 1+, ,()+[]

λy 1 λx–()M xi yj 1+ zk 1+,,() λxM xi 1+ yj 1+ zk 1+,,()+[]

+{

}

+

λx x xi–() xi 1+ xi–()⁄=

λy y yj–() yj 1+ yj–()⁄=

λz z zk–() zk 1+ zk–()⁄=

Interpolate Matrix(x,y,z)

4-168

Dialog Box

Matrix to interpolate
Matrix to be interpolated. It should be five dimensional, the first two
dimensions corresponding to the matrix at each value of x, y, and z. For
example, if you have eight matrices A, B, C, D, E, F, G, and H defined at
the following values of x, y, and z, then the corresponding input matrix is
given by

Inputs and
Outputs

The first input is the first independent variable.

The second input is the second independent variable.

The third input is the third independent variable.

The output is the interpolated matrix.

Assumptions
and Limitations

This block must be driven from the Simulink PreLookup Index Search block.

(x = 0.0,y = 1.0,z = 0.1) matrix(:,:,1,1,1) = A;

(x = 0.0,y = 1.0,z = 0.5) matrix(:,:,1,1,2) = B;

(x = 0.0,y = 3.0,z = 0.1) matrix(:,:,1,2,1) = C;

(x = 0.0,y = 3.0,z = 0.5) matrix(:,:,1,2,2) = D;

(x = 1.0,y = 1.0,z = 0.1) matrix(:,:,2,1,1) = E;

(x = 1.0,y = 1.0,z = 0.5) matrix(:,:,2,1,2) = F;

(x = 1.0,y = 3.0,z = 0.1) matrix(:,:,2,2,1) = G;

(x = 1.0,y = 3.0,z = 0.5) matrix(:,:,2,2,2) = H;

Interpolate Matrix(x,y,z)

4-169

Examples See the following Aerospace Blockset blocks: 3D Controller
[A(v),B(v),C(v),D(v)], 3D Observer Form [A(v),B(v),C(v),F(v),H(v)], and 3D
Self-Conditioned [A(v),B(v),C(v),D(v)].

See Also Interpolate Matrix(x)

Interpolate Matrix(x,y)

Invert 3x3 Matrix

4-170

4Invert 3x3 MatrixPurpose Compute the inverse of 3-by-3 matrix using determinant formula

Library Utilities/Math Operations

Description The Invert 3x3 Matrix block computes the inverse of 3-by-3 matrix using
determinant formula.

The inverse of the matrix is calculated by

If the , an error is thrown and the simulation will stop.

Dialog Box

Inputs and
Outputs

The input is a 3-by-3 matrix.

The output of the block is 3-by-3 matrix inverse of input matrix.

See Also Adjoint of 3x3 Matrix

Create 3x3 Matrix

Determinant of 3x3 Matrix

inv A() adj A()
det A()
-------------------=

det A() 0=

ISA Atmosphere Model

4-171

4ISA Atmosphere ModelPurpose Implement the International Standard Atmosphere (ISA)

Library Environment/Atmosphere

Description The ISA Atmosphere Model block implements the mathematical
representation of the international standard atmosphere values for ambient
temperature, pressure, density, and speed of sound for the input geopotential
altitude.

The ISA Atmosphere Model block icon displays the input and output metric
units.

Dialog Box

Change atmospheric parameters
Select to customize various atmospheric parameters to be different from
the ISA values.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of
20 km, temperature and pressure values are held. Density and speed of sound
are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model, Lapse Rate Model

Lapse Rate Model

4-172

4Lapse Rate ModelPurpose Implement lapse rate model for atmosphere

Library Environment/Atmosphere

Description The Lapse Rate Model block implements the mathematical representation of
the lapse rate atmospheric equations for ambient temperature, pressure,
density, and speed of sound for the input geopotential altitude. You can
customize this atmospheric model, described below, by specifying atmospheric
properties in the block dialog.

The following equations define the troposphere

The following equations define the tropopause (lower stratosphere)

T To Lh–=

P Po
T
To
------ 
 

g
LR

⋅=

ρ ρo
T
To
------ 
 

g
LR
-------- 1–

⋅=

a γRT=

T 216.7=
oK

P Po
T
To
------ 
 

g
LR
-------- 1–

e⋅ ⋅
g

RT
--------- 11000 h–()

=

ρ ρo
T
To
------ 
 

g
LR

e

g
RT
--------- 11000 h–()

⋅ ⋅=

a γRT=

Lapse Rate Model

4-173

where:

The Lapse Rate Model block icon displays the input and output metric units.

T0 Absolute temperature at mean sea level in degrees Kelvin

Air density at mean sea level in kg/m3

Static pressure at mean sea level in N/m2

Altitude in m

Absolute temperature at altitude h in degrees Kelvin

ρ Air density at altitude h in kg/m3

Static pressure at altitude h in N/m2

Speed of sound at altitude h in m/s2

Lapse rate in degrees Kelvin/m

Characteristic gas constant J/kg-degrees Kelvin

Specific heat ratio

Acceleration due to gravity in m/s2

ρ0

P0

h

T

P

a

L

R

γ

g

Lapse Rate Model

4-174

Dialog Box

Change atmospheric parameters
When selected, the following atmospheric parameters can be customized to
be different from the ISA values.

Acceleration due to gravity
Specify the acceleration due to gravity (g).

Ratio of specific heats
Specify the ratio of specific heats (γ).

Characteristic gas constant
Specify the characteristic gas constant (R).

Lapse Rate Model

4-175

Lapse rate
Specify the lapse rate of the troposphere (L).

Height of troposphere
Specify the upper altitude of the troposphere, a range of decreasing
temperature.

Height of tropopause
Specify the upper altitude of the tropopause, a range of constant
temperature.

Air density at mean sea level
Specify the air density at sea level ().

Ambient pressure at mean sea level
Specify the ambient pressure at sea level ().

Ambient temperature at mean sea level
Specify the ambient temperature at sea level ().

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

Below the geopotential altitude of 0 km and above the geopotential altitude of
the tropopause, temperature and pressure values are held. Density and speed
of sound are calculated using a perfect gas relationship.

References [1] U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

ρ0

P0

T0

Length Conversion

4-176

4Length ConversionPurpose Convert from length units to desired length units

Library Utilities/Unit Conversions

Description The Length Conversion block computes the conversion factor from specified
input length units to specified output length units and applies the conversion
factor to the input signal.

The Length Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is length in initial length units.

m Meters

ft Feet

km Kilometers

in Inches

mi Miles

naut mi Nautical miles

Length Conversion

4-177

The output is length in final length units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Mach Number

4-178

4Mach NumberPurpose Compute Mach number using velocity and speed of sound

Library Flight Parameters

Description The Mach Number block computes Mach number.

Mach number is defined as

where is speed of sound and V is velocity vector.

Dialog Box

Inputs and
Outputs

The first input is the velocity vector.

The second input is the speed of sound.

The output of the block is the Mach number.

Examples See Airframe in the aeroblk_HL20 model for an example of this block.

See Also Aerodynamic Forces and Moments
Dynamic Pressure

Mach V V⋅
a

-----------------=

a

Mass Conversion

4-179

4Mass ConversionPurpose Convert from mass units to desired mass units

Library Utilities/Unit Conversions

Description The Mass Conversion block computes the conversion factor from specified
input mass units to specified output mass units and applies the conversion
factor to the input signal.

The Mass Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is the mass in initial mass units.

The output is the mass in final mass units.

See Also Acceleration Conversion

Angle Conversion

lbm Pound mass

kg Kilograms

slug Slugs

Mass Conversion

4-180

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Pressure Conversion

Temperature Conversion

Velocity Conversion

Moments About CG Due to Forces

4-181

4Moments About CG Due to ForcesPurpose Compute moments about center of gravity due to forces that are applied at
point CP, not the center of gravity

Library Mass Properties

Description The Moments about CG due to Forces block computes moments about center of
gravity due to forces that are applied at point CP not the center of gravity.

Dialog Box

Inputs and
Outputs

The first input is the forces applied at point CP.

The second input is the center of gravity.

The third input is the application point of forces.

The output of the block is moments at the center of gravity in x-axes, y-axes and
z-axes.

See Also Aerodynamic Forces and Moments

Estimate Center of Gravity

Non-Standard Day 210C

4-182

4Non-Standard Day 210CPurpose Implement the MIL-STD-210C climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 210C block implements a portion of the climatic data
of the MIL-STD-210C worldwide air environment to 80 km (geometric or
approximately 262000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 210C block icon displays the input and output units
selected from the Units list.

Dialog Box

Non-Standard Day 210C

4-183

Units
Specifies the input and output units:

Specification
Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-STD-210C.

Atmospheric model type
Select the representation of the atmospheric data.

Height Temperature Speed of Sound Air Pressure Air Density

Metric
(MKS)

Meters Degrees
Kelvin

Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per second Pound force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound force
per square
inch

Slug per
cubic foot

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See
the block reference for more information.

MIL-HDBK-310
This selection is linked to the Non-Standard Day 310 block. See the
block reference for more information.

MIL-STD-210C

Profile Realistic atmospheric profiles associated with extremes at
specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when the
total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

Non-Standard Day 210C

4-184

Extreme parameter
Select the atmospheric parameter that is the extreme value.

Frequency of occurrence
Select percent of time the values would occur.

Altitude of extreme value
Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

High temperature

Low temperature

High density

Low density

High pressure This option is available only when Envelope is
selected for Atmospheric model type

Low pressure This option is available only when Envelope is
selected for Atmospheric model type

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

1%

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is
selected for Atmospheric model type.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)

Non-Standard Day 210C

4-185

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80000 meters (approximately 262000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3281 feet) and above the
geometric altitude of 30000 meters (approximately 98425 feet). These
exceptions are due to lack of data in MIL-STD-210C for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-STD-210C for these conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-STD-210C.

References Global Climatic Data for Developing Military Products (MIL-STD-210C), 9
January 1987, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 310

Non-Standard Day 310

4-186

4Non-Standard Day 310Purpose Implement the MIL-HDBK-310 climatic data

Library Environment/Atmosphere

Description The Non-Standard Day 310 block implements a portion of the climatic data of
the MIL-HDBK-310 worldwide air environment to 80 km (geometric or
approximately 262000 feet geometric) for absolute temperature, pressure,
density, and speed of sound for the input geopotential altitude.

The Non-Standard Day 310 block icon displays the input and output units
selected from the Units list.

Dialog Box

Non-Standard Day 310

4-187

Units
Specifies the input and output units:

Specification
Specify the atmosphere model type from one of the following atmosphere
models. The default is MIL-HDBK-310.

Atmospheric model type
Select the representation of the atmospheric data.

Height Temperature Speed of Sound Air Pressure Air Density

Metric
(MKS)

Meters Degrees
Kelvin

Meters per
second

Pascal Kilograms
per cubic
meter

English
(Velocity
in ft/s)

Feet Degrees
Rankine

Feet per second Pound force
per square
inch

Slug per
cubic foot

English
(Velocity
in kts)

Feet Degrees
Rankine

Knots Pound force
per square
inch

Slug per
cubic foot

1976 COESA-extended U.S. Standard Atmosphere
This selection is linked to the COESA Atmosphere Model block. See
the block reference for more information.

MIL-HDBK-310

MIL-STD-210C
This selection is linked to the Non-Standard Day 210C block. See the
block reference for more information.

Profile Realistic atmospheric profiles associated with extremes
at specified altitudes. Recommended for simulation of
vehicles vertically traversing the atmosphere or when
the total influence of the atmosphere is needed.

Envelope Uses extreme atmospheric values at each altitude.
Recommended for vehicles only horizontally traversing
the atmosphere without much change in altitude.

Non-Standard Day 310

4-188

Extreme parameter
Select the atmospheric parameter which is the extreme value.

Frequency of occurrence
Select percent of time the values would occur.

Altitude of extreme value
Select geometric altitude at which the extreme values occur. Applies to the
profile atmospheric model only.

High temperature

Low temperature

High density

Low density

High pressure This option is available only when Envelope
is selected for Atmospheric model type.

Low pressure This option is available only when Envelope
is selected for Atmospheric model type.

Extreme values This option is available only when Envelope is
selected for Atmospheric model type.

1%

5% This option is available only when Envelope is
selected for Atmospheric model type.

10%

20% This option is available only when Envelope is
selected for Atmospheric model type.

5 km (16404 ft)

10 km (32808 ft)

20 km (65617 ft)

30 km (98425 ft)

40 km (131234 ft)

Non-Standard Day 310

4-189

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is geopotential height.

The four outputs are temperature, speed of sound, air pressure, and air
density.

Assumptions
and Limitations

All values are held below the geometric altitude of 0 m (0 feet) and above the
geometric altitude of 80000 meters (approximately 262000 feet). The envelope
atmospheric model has a few exceptions where values are held below the
geometric altitude of 1 kilometer (approximately 3281 feet) and above the
geometric altitude of 30000 meters (approximately 98425 feet). These
exceptions are due to lack of data in MIL-HDBK-310 for these conditions.

In general, temperature values are extrapolated linearly and density values
are extrapolated logarithmically. Pressure and speed of sound are calculated
using a perfect gas relationship. The envelope atmospheric model has a few
exceptions where the extreme value is linearly interpolated and it is the only
value provided as an output. These envelope atmospheric model exceptions
apply to all cases of high and low pressure, high and low temperature, and high
and low density, excluding the extreme values and 1% frequency of occurrence.
These exceptions are due to lack of data in MIL-HDBK-310 for these
conditions.

A limitation is that climatic data for the region south of 60°S latitude is
excluded from consideration in MIL-HDBK-310.

References Global Climatic Data for Developing Military Products (MIL-HDBK-310), 23
June 1997, Department of Defense, Washington, D.C.

See Also COESA Atmosphere Model

ISA Atmosphere Model

Non-Standard Day 210C

Pressure Altitude

4-190

4Pressure AltitudePurpose Calculate pressure altitude based on ambient pressure

Library Environment/Atmosphere

Description The Pressure Altitude block computes the pressure altitude based on ambient
pressure. Pressure altitude is the altitude in the 1976 Committee on the
Extension of the Standard Atmosphere (COESA) United States with specified
ambient pressure.

Pressure altitude is also known as the mean sea level (MSL) altitude.

The Pressure Altitude block icon displays the input and output units selected
from the Units list.

Dialog Box

Units
Specifies the input units:

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The input is the static pressure.

The output is the pressure altitude.

Pstatic Alt_p

Metric (MKS) Pascal Meters

English Pound force per square inch Feet

Pressure Altitude

4-191

Assumptions
and Limitations

Below the pressure of 0.3961 Pa (approximately 0.00006 psi) and above the
pressure of 101325 Pa (approximately 14.7 psi), altitude values are
extrapolated logarithmically.

Air is assumed to be dry and an ideal gas.

References U.S. Standard Atmosphere, 1976, U.S. Government Printing Office,
Washington, D.C.

See Also COESA Atmosphere Model

Pressure Conversion

4-192

4Pressure ConversionPurpose Convert from pressure units to desired pressure units

Library Utilities/Unit Conversions

Description The Pressure Conversion block computes the conversion factor from specified
input pressure units to specified output pressure units and applies the
conversion factor to the input signal.

The Pressure Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is the pressure in initial pressure units.

The output is the pressure in final pressure units.

psi Pound mass per square inch

Pa Pascals

psf Pound mass per square foot

atm Atmospheres

Pressure Conversion

4-193

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Temperature Conversion

Velocity Conversion

Quaternions to Direction Cosine Matrix

4-194

4Quaternions to Direction Cosine MatrixPurpose Convert quaternion vector to direction cosine matrix

Library Utilities/Axes Transformations

Description The Quaternions to Direction Cosine Matrix block transforms the four-element
unit quaternion vector (q0,q1,q2,q3) into a 3-by-3 direction cosine matrix
(DCM). The outputted DCM performs the coordinate transformation of a vector
in inertial axes to a vector in body axes.

Using quaternion algebra, if a point P is subject to the rotation described by a
quaternion q, it changes to P’ given by the following relationship:

Expanding P’ and collecting terms in x, y, and z gives the following for P’ in
terms of P in the vector quaternion format:

Since individual terms in P’ are linear combinations of terms in x, y, and z, a
matrix relationship to rotate the vector (x,y,z) to (x’,y’,z’) can be extracted from
the preceding. This matrix rotates a vector in inertial axes, and hence is
transposed to generate the DCM that performs the coordinate transformation
of a vector in inertial axes into body axes.

P ′ qPqc

q q0 iq1 jq2 kq3

qc
+ + +=

q0 iq1– jq2– kq3

P

–

0 ix jy kz+ + +

=

=

=

P ′

0
x ′
y ′
z ′

0

q0
2 q1

2 q2
2

– q3
2

–+()x 2 q1q2 q0q3–()y 2 q1q3 q0q2+()z+ +

2 q0q3 q1q2+()x q0
2 q1

2
– q2

2 q3
2

–+()y 2 q2q3 q0q1–()z+ +

2 q1q3 q0q2–()x 2 q0q1 q2q3+()y q0
2 q1

2
– q2

2
– q3

2
+()z+ +

= =

Quaternions to Direction Cosine Matrix

4-195

Dialog Box

Inputs and
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-3 direction cosine matrix.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Euler Angles

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

Quaternions to Euler Angles

4-196

4Quaternions to Euler AnglesPurpose Convert quaternion vector to Euler angles

Library Utilities/Axes Transformations

Description The Quaternions to Euler Angles block converts the four-element unit
quaternion (q0,q1,q2,q3) into the equivalent three Euler angle rotations (roll,
pitch, yaw).

The conversion is generated by comparing elements in the direction cosine
matrix (DCM), as functions of the Euler rotation angles, with elements in the
DCM, as functions of a unit quaternion vector:

From the preceding, you can derive the following relationships between DCM
elements and individual Euler angles:

DCM
θ ψcoscos θ ψsincos θsin–

φ θ ψcossinsin φ ψsincos–() φ θ ψsinsinsin φ ψcoscos+() φ θcossin
φ θ ψcossincos φ ψsinsin+() φ θ ψsinsincos φ ψcossin–() φ θcoscos

=

DCM

q0
2 q1

2 q2
2 q3

2
––+() 2 q1q2 q0q3+() 2 q1q3 q0q2–()

2 q1q2 q0q3–() q0
2 q1

2
– q2

2 q3
2

–+() 2 q2q3 q0q1+()

2 q1q3 q0q2+() 2 q2q3 q0q1–() q0
2 q1

2
– q2

2 q3
2

+–()

=

φ DCM 2 3,() DCM 3 3,(),()atan=

2 q2q3 q0q1+() q0
2 q1

2
– q2

2 q3
2

+–(),()atan=

θ D– CM 1 3,()()asin=
2– q1q3 q0q2–()()asin=

ψ DCM 1 2,() DCM 1 1,(),()atan=

2 q1q2 q0q3+() q0
2 q1

2 q2
2 q3

2
––+(),()atan=

Quaternions to Euler Angles

4-197

Dialog Box

Inputs and
Outputs

The input is a 4-by-1 quaternion vector.

The output is a 3-by-1 vector of Euler angles.

Assumptions
and Limitations

This implementation generates a pitch angle that lies between degrees,
and roll and yaw angles that lie between degrees.

The Euler angle solution is singular when the pitch angle θ is equal to
degrees.

Examples See aero_six_dof for an example of the use of the Quaternions to Euler Angles
block in an implementation of the equations of motion of a rigid body.

See Also Direction Cosine Matrix to Euler Angles

Direction Cosine Matrix to Quaternions

Euler Angles to Direction Cosine Matrix

Euler Angles to Quaternions

Quaternions to Direction Cosine Matrix

90±
180±

90±

Relative Ratio

4-198

4Relative RatioPurpose Calculate relative atmospheric ratios

Library Flight Parameters

Description The Relative Ratio block computes the relative atmospheric ratios, including
relative temperature ratio (θ), , relative pressure ratio (δ), and relative
density ratio (σ).

θ represents the ratio of the air stream temperature at a chosen reference
station relative to sea level standard atmospheric conditions.

δ represents the ratio of the air stream pressure at a chosen reference station
relative to sea level standard atmospheric conditions.

σ represents the ratio of the air stream density at a chosen reference station
relative to sea level standard atmospheric conditions.

The Relative Ratio block icon displays the input units selected from the Units
list.

Dialog Box

θ

θ T
To
------=

δ P
Po
------=

σ ρ
ρo
-----=

Relative Ratio

4-199

Units
Specifies the input units:

Theta
When selected, the θ is calculated and static temperature is a required
input.

Square root of theta
When selected, the is calculated and static temperature is a required
input.

Delta
When selected, the δ is calculated and static pressure is a required input.

Sigma
When selected, the σ is calculated and static density is a required input.

Inputs and
Outputs

The four possible inputs are Mach number, static temperature, static pressure,
and static density.

The four possible outputs are θ, , δ, and σ.

Assumptions For cases in which total temperature, total pressure, or total density ratio is
desired (Mach number is nonzero), the total temperature, total pressure, and
total densities are calculated assuming perfect gas (with constant molecular
weight, constant pressure specific heat, and constant specific heat ratio) and
dry air.

References Aeronautical Vestpocket Handbook, United Technologies Pratt & Whitney,
August, 1986.

Tstatic Pstatic rho_static

Metric (MKS) Degrees Kelvin Pascal Kilograms per
cubic meter

English Degrees Rankine Pound force per
square inch

Slug per cubic foot

θ

θ

Second Order Linear Actuator

4-200

4Second Order Linear ActuatorPurpose Implement a second-order linear actuator

Library Actuators

Description The Second Order Linear Actuator block outputs the actual actuator position
using the input demanded actuator position and other dialog parameters that
define the system.

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and
Outputs

The input is the demanded actuator position.

The output is the actual actuator position.

See Also Second Order Nonlinear Actuator

Second Order Nonlinear Actuator

4-201

4Second Order Nonlinear ActuatorPurpose Implement a second-order actuator with rate and deflection limits

Library Actuators

Description The Second Order Nonlinear Actuator block outputs the actual actuator
position using the input demanded actuator position and other dialog
parameters that define the system.

Dialog Box

Natural frequency
The natural frequency of the actuator. The units of natural frequency are
radians per second.

Damping ratio
The damping ratio of the actuator. A dimensionless parameter.

Maximum deflection
The largest actuator position allowable. The units of maximum deflection
should be the same as the units of demanded actuator position.

Second Order Nonlinear Actuator

4-202

Minimum deflection
The smallest actuator position allowable. The units of minimum deflection
should be the same as the units of demanded actuator position.

Maximum rate
The fastest speed allowable for actuator motion. The units of maximum
rate should be the units of demanded actuator position per second.

Initial position
The initial position of the actuator. The units of initial position should be
the same as the units of demanded actuator position.

Inputs and
Outputs

The input is the demanded actuator position.

The output is the actual actuator position.

Examples See the aero_guidance model and the Actuators subsystem in the
aeroblk_HL20 model for an example of this block.

See Also Second Order Linear Actuator

Self-Conditioned [A,B,C,D]

4-203

4Self-Conditioned [A,B,C,D]Purpose Implement a state-space controller in a self-conditioned form

Library GNC/Controls

Description The Self-Conditioned [A,B,C,D] block can be used to implement the state-space
controller defined by

in the self-conditioned form

The input umeas is a vector of the achieved actuator positions, and the output
udem is the vector of controller actuator demands. In the case that the actuators
are not limited, then umeas = udem and substituting the output equation into
the state equation returns the nominal controller. In the case that they are not
equal, the dynamics of the controller are set by the poles of A-HC.

Hence H must be chosen to make the poles sufficiently fast to track umeas but
at the same time not so fast that noise on e is propagated to udem. The matrix
H is designed by a callback to the Control System Toolbox command place to
place the poles at defined locations.

x· Ax Be+=

u Cx De+=

z· A HC–()z B HD–()e Humeas++=

udem Cz De+=

Self-Conditioned [A,B,C,D]

4-204

Dialog Box

A-matrix
A-matrix of the state-space implementation.

B-matrix
B-matrix of the state-space implementation.

C-matrix
C-matrix of the state-space implementation.

D-matrix
D-matrix of the state-space implementation.

Initial state, x_initial
This is a vector of initial states for the controller, i.e., initial values for the
state vector, z. It should have length equal to the size of the first dimension
of A.

Poles of A-H*C
This is a vector of the desired poles of A-H*C. Hence the number of pole
locations defined should be equal to the dimension of the A-matrix.

Self-Conditioned [A,B,C,D]

4-205

Inputs and
Outputs

The first input is the control error.

The second input is the measured actuator position.

The output is the actuator demands.

Assumptions
and Limitations

This block requires the Control System Toolbox.

Examples This Simulink model shows a state-space controller implemented in both
self-conditioned and standard state-space forms. The actuator authority limits
of +/- 0.5 units are modeled by the saturation block.

Self-Conditioned [A,B,C,D]

4-206

Notice that the A-matrix has a zero in the 1,1 element, indicating integral
action.

The top trace shows the conventional state-space implementation. The output
of the controller winds up well past the actuator upper authority limit of +0.5.
The lower trace shows that the self-conditioned form results in an actuator
demand that tracks the upper authority limit, which means that when the sign
of the control error, e, is reversed, the actuator demand responds immediately.

References The algorithm used to determine the matrix H is defined in Kautsky, Nichols,
and Van Dooren, “Robust Pole Assignment in Linear State Feedback,”
International Journal of Control, Vol. 41, No. 5, pages 1129-1155, 1985.

See Also 1D Self-Conditioned [A(v),B(v),C(v),D(v)]

2D Self-Conditioned [A(v),B(v),C(v),D(v)]

3D Self-Conditioned [A(v),B(v),C(v),D(v)]

Simple Variable Mass 3DoF (Body Axes)

4-207

4Simple Variable Mass 3DoF (Body Axes)Purpose Implement three-degrees-of-freedom equations of motion

Library Equations of Motion/3DoF

Description The Simple Variable Mass 3DoF (Body Axes) block considers the rotation in the
vertical plane of a body-fixed coordinate frame about an Earth-fixed reference
frame.

Simple Variable Mass 3DoF (Body Axes)

4-208

The equations of motion are

where the applied forces are assumed to act at the center of gravity of the body.

u·
Fx
m
------ m· U

m
----------– qw– g θ

w·

sin–

Fz
m
------ m· w

m
----------– qu g θ

q·

cos+ +

M Iyy
· q–

Iyy

θ
·

q

Iyy
· Iyyfull Iyy empty–

mfull mempty–
---m·

=

=

=

=

=

Simple Variable Mass 3DoF (Body Axes)

4-209

Dialog Box

Simple Variable Mass 3DoF (Body Axes)

4-210

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Initial velocity
A scalar value for the initial velocity of the body, (V0).

Initial body attitude
A scalar value for the initial pitch attitude of the body, .

Initial incidence
A scalar value for the initial angle between the velocity vector and the body,

.

Initial body rotation rate
A scalar value for the initial body rotation rate, (q0).

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass rate.

Custom Variable Mass and inertia variations are customizable.

θ0()

α0()

Simple Variable Mass 3DoF (Body Axes)

4-211

Initial position (x,z)
A two-element vector containing the initial location of the body in the
Earth-fixed reference frame.

Initial mass
A scalar value for the initial mass of the body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia
A scalar value for the empty inertia of the body.

Full inertia
A scalar value for the full inertia of the body.

Gravity source
Specify source of gravity:

Acceleration due to gravity
A scalar value for the acceleration due to gravity used if internal gravity
source is selected. If gravity is to be neglected in the simulation, this value
can be set to 0.

Inputs and
Outputs

The first input to the block is the force acting along the body x-axis, .

The second input to the block is the force acting along the body z-axis, .

The third input to the block is the applied pitch moment, (M).

The fourth input to the block is the rate of change of mass, .

The fifth optional input to the block is gravity in the selected units.

The first output from the block is the pitch attitude, in radians .

External Variable gravity input to block

Internal Constant gravity specified in mask

Fx()

Fz()

m()·

θ()

Simple Variable Mass 3DoF (Body Axes)

4-212

The second output is the pitch angular rate, in radians per second (q).

The third output is the pitch angular acceleration, in radians per second
squared .

The fourth output is a two-element vector containing the location of the body,
in the Earth-fixed reference frame, (Xe,Ze).

The fifth output is a two-element vector containing the velocity of the body
resolved into the body-fixed coordinate frame, (u,w).

The sixth output is a two-element vector containing the acceleration of the body
resolved into the body-fixed coordinate frame, (Ax,Az).

The seventh output is a scalar element containing a flag for fuel tank status,
(Fuel):

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

See Also 3DoF (Body Axes)

Custom Variable Mass 3DoF (Body Axes)

Incidence & Airspeed

q·()

Simple Variable Mass 6DoF (Euler Angles)

4-213

4Simple Variable Mass 6DoF (Euler Angles)Purpose Implement an Euler angle representation of six-degrees-of-freedom equations
of motion

Library Equations of Motion/6DoF

Description The Simple Variable Mass 6DoF (Euler Angles) block considers the rotation of
a body-fixed coordinate frame about an Earth-fixed reference
frame . The origin of the body-fixed coordinate frame is the center
of gravity of the body, and the body is assumed to be rigid, an assumption that
eliminates the need to consider the forces acting between individual elements
of mass. The Earth-fixed reference frame is considered inertial, a simplification
that allows the forces due to the Earth’s motion relative to a star-fixed
reference system to be neglected.

The translational motion of the body-fixed coordinate frame is given below,
where the applied forces [Fx Fy Fz]

T are in the body-fixed frame.

Xb Yb Zb, ,()
Xe Ye Ze, ,()

Ye

Ze

Earth-fixed reference frame

Xe
ZbYb

vb wb

Xb
ub

Center of
Gravity

O

Fb

Fx

Fy

Fz

= m Vb
· ω Vb×+() m· Vb+=

Simple Variable Mass 6DoF (Euler Angles)

4-214

The rotational dynamics of the body-fixed frame are given below, where the
applied moments are [L M N]T, and the inertia tensor is with respect to the
origin O.

The inertia tensor is determined using a table lookup which linearly
interpolates between Ifull and Iempty based on mass (m). While the rate of
change of the inertia tensor is estimated by the following equation.

The relationship between the body-fixed angular velocity vector, [p q r]T, and
the rate of change of the Euler angles, []T, can be determined by
resolving the Euler rates into the body-fixed coordinate frame.

Inverting then gives the required relationship to determine the Euler rate
vector.

Vb

ub

vb

wb

ω,
p
q
r

= =

I

MB

L
M
N

= Iω· ω Iω() I·ω+×+=

I

Ixx Ixy– Ixz–

Iyx– Iyy Iyz–

Izx– Izy– Izz

=

I·
Ifull I empty–

mfull mempty–
--m·=

φ· θ· ψ·

p
q
r

φ·

0
0

1 0 0
0 φcos φsin
0 φsin– φcos

0

θ·

0

1 0 0
0 φcos φsin
0 φsin– φcos

θcos 0 θsin–

0 1 0
θsin 0 θcos

0
0

ψ·
+ + J 1–

φ·

θ·

ψ·
≡=

J

Simple Variable Mass 6DoF (Euler Angles)

4-215

Dialog Box

φ·

θ·

ψ·
J

p
q
r

1 φ θtansin() φ θtancos()
0 φcos φsin–

0 φsin
θcos

------------ φcos
θcos

p
q
r

= =

Simple Variable Mass 6DoF (Euler Angles)

4-216

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Euler Angles selection conforms to the previously described equations
of motion.

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Simple Variable Mass 6DoF (Euler Angles)

4-217

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

Simple Variable Mass 6DoF (Euler Angles)

4-218

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)\

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Quaternion)

4-219

4Simple Variable Mass 6DoF (Quaternion)Purpose Implement a quaternion representation of six-degrees-of-freedom equations of
motion

Library Equations of Motion/6DoF

Description For a description of the coordinate system employed and the translational
dynamics, see the block description for the Simple Variable Mass 6DoF (Euler
Angles) block.

The integration of the rate of change of the quaternion vector is given below.
The gain drives the norm of the quaternion state vector to 1.0 should
become nonzero. You must choose the value of this gain with care, because a
large value improves the decay rate of the error in the norm, but also slows the
simulation because fast dynamics are introduced. An error in the magnitude in
one element of the quaternion vector is spread equally among all the elements,
potentially increasing the error in the state vector.

K ε

q· 0

q1
·

q· 2

q· 3

1
2

q3 q2– q1

q2 q3 q0–

q1– q0 q3

q0– q1– q2–

p
q
r

Kε

q0

q1

q2

q3

ε

+=

1 q0
2 q1

2 q3
2 q4

2
+ + +()–=

Simple Variable Mass 6DoF (Quaternion)

4-220

Dialog Box

Simple Variable Mass 6DoF (Quaternion)

4-221

Units
Specifies the input and output units:

Mass Type
Select the type of mass to use:

The Simple Variable selection conforms to the previously described
equations of motion.

Representation
Select the representation to use:

The Quaternion selection conforms to the previously described equations
of motion.

Forces Moment Acceleration Velocity Position Mass Inertia

Metric
(MKS)

Newton Newton
meter

Meters per
second
squared

Meters
per
second

Meters Kilogram Kilogram
meter
squared

English
(Velocity
in ft/s)

Pound Foot
pound

Feet per
second
squared

Feet per
second

Feet Slug Slug foot
squared

English
(Velocity
in kts)

Pound Foot
pound

Feet per
second
squared

Knots Feet Slug Slug foot
squared

Mass Description

Fixed Mass is constant throughout the simulation.

Simple Variable Mass and inertia vary linearly as a function of mass
rate.

Custom Variable Mass and inertia variations are customizable.

Mass Description

Euler Angles Use Euler angles within equations of motion.

Quaternion Use Quaternions within equations of motion.

Simple Variable Mass 6DoF (Quaternion)

4-222

Initial position in inertial axes
The three-element vector for the initial location of the body in the
Earth-fixed reference frame.

Initial velocity in body axes
The three-element vector for the initial velocity in the body-fixed
coordinate frame.

Initial Euler rotation
The three-element vector for the initial Euler rotation angles [roll, pitch,
yaw], in radians.

Initial body rotation rates
The three-element vector for the initial body-fixed angular rates, in radians
per second.

Initial mass
The initial mass of the rigid body.

Empty mass
A scalar value for the empty mass of the body.

Full mass
A scalar value for the full mass of the body.

Empty inertia matrix
A 3-by-3 inertia tensor matrix for the empty inertia of the body.

Full inertia matrix
A 3-by-3 inertia tensor matrix for the full inertia of the body.

Gain for quaternion normalization
The gain to maintain the norm of the quaternion vector equal to 1.0.

Inputs and
Outputs

The first input to the block is a vector containing the three applied forces.

The second input is a vector containing the three applied moments.

The third input is a scalar containing the rate of change of mass.

The first output is a three-element vector containing the velocity in the
Earth-fixed reference frame.

Simple Variable Mass 6DoF (Quaternion)

4-223

The second output is a three-element vector containing the position in the
Earth-fixed reference frame.

The third output is a three-element vector containing the Euler rotation angles
[roll, pitch, yaw], in radians.

The fourth output is a 3-by-3 matrix for the coordinate transformation from
Earth-fixed axes to body-fixed axes.

The fifth output is a three-element vector containing the velocity in the
body-fixed frame.

The sixth output is a three-element vector containing the angular rates in
body-fixed axes, in radians per second.

The seventh output is a three-element vector containing the angular
accelerations in body-fixed axes, in radians per second.

The eighth output is a three-element vector containing the accelerations in
body-fixed axes.

The ninth output is a scalar element containing a flag for fuel tank status:

• 1 indicates that the tank is full.

• 0 indicates that the integral is neither full nor empty.

• -1 indicates that the tank is empty.

Assumptions
and Limitations

The block assumes that the applied forces are acting at the center of gravity of
the body.

References Mangiacasale, L., “Flight Mechanics of a u-Airplane with a MATLAB Simulink
Helper,” Edizioni Libreria CLUP, 1998.

See Also 6DoF (Euler Angles)

6DoF (Quaternion)

Custom Variable Mass 6DoF (Euler Angles)

Custom Variable Mass 6DoF (Quaternion)

Simple Variable Mass 6DoF (Euler Angles)

SinCos

4-224

4SinCosPurpose Compute the sine and cosine of the input angle

Library Utilities/Math Operations

Description The SinCos block computes the sine and cosine of the input angle, theta.

Dialog Box

Inputs and
Outputs

The first input is an angle, in radians.

The first output is the sine of the input angle.

The second output is the cosine of the input angle.

Symmetric Inertia Tensor

4-225

4Symmetric Inertia TensorPurpose Create an inertia tensor from moments and products of inertia

Library Mass Properties

Description The Symmetric Inertia Tensor block creates an inertia tensor from moments
and products of inertia. Each input corresponds to an element of the tensor.

The inertia tensor has the form of

Dialog Box

Inputs and
Outputs

The first input is the moment of inertia about the x-axis.

The second input is the product of inertia in the xy plane.

The third input is the product of inertia in the xz plane.

The fourth input is the moment of inertia about the y-axis.

The fifth input is the product of inertia in the yz plane.

The sixth input is the moment of inertia about the z-axis.

The output of the block is a symmetric 3-by-3 inertia tensor.

See Also Create 3x3 Matrix

Inertia

Ixx Ixy– Iyz–

Ixy– Iyy Ixz–

Iyz– Ixz– Izz

=

Temperature Conversion

4-226

4Temperature ConversionPurpose Convert from temperature units to desired temperature units

Library Utilities/Unit Conversions

Description The Temperature Conversion block computes the conversion factor from
specified input temperature units to specified output temperature units and
applies the conversion factor to the input signal.

The Temperature Conversion block icon displays the input and output units
selected from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

Inputs and
Outputs

The input is the temperature in initial temperature units.

The output is the temperature in final temperature units.

K Degrees Kelvin

F Degrees Fahrenheit

C Degrees Celsius

R Degrees Rankine

Temperature Conversion

4-227

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Velocity Conversion

Turbofan Engine System

4-228

4Turbofan Engine SystemPurpose Implement a first-order representation of a turbofan engine with controller

Library Propulsion

Description The Turbofan Engine System block computes the thrust and the weight of fuel
flow of a turbofan engine and controller at a specific throttle position, Mach
number, and altitude.

This system is represented by a first-order system with unitless heuristic
lookup tables for thrust, thrust specific fuel consumption (TSFC), and engine
time constant. For the lookup table data, thrust is a function of throttle position
and Mach number, TSFC is a function of thrust and Mach number, and engine
time constant is a function of thrust. The unitless lookup table outputs are
corrected for altitude using the relative pressure ratio δ and relative
temperature ratio θ, and scaled by maximum sea level static thrust, fastest
engine time constant at sea level static, sea level static thrust specific fuel
consumption, and ratio of installed thrust to uninstalled thrust.

The Turbofan Engine System block icon displays the input and output units
selected from the Units list.

Turbofan Engine System

4-229

Dialog Box

Units
Specifies the input and output units:

Initial thrust source
Specifies the source of initial thrust:

Altitude Thrust Fuel Flow

Metric (MKS) Meters Newtons Kilograms per second

English Feet Pound force Pound mass per second

Internal Use initial thrust value from mask dialog.

External Use external input for initial thrust value.

Turbofan Engine System

4-230

Initial thrust
Initial value for thrust.

Maximum sea-level static thrust
Maximum thrust at sea-level and at Mach = 0.

Fastest engine time constant at sea-level static
Fastest engine time at sea level.

Sea-level static thrust specific fuel consumption
Thrust specific fuel consumption at sea level, at Mach = 0, and at maximum
thrust, in specified mass units per hour per specified thrust units.

Ratio of installed thrust to uninstalled thrust
Coefficient representing the loss in thrust due to engine installation.

Inputs and
Outputs

The first input is the throttle position. Throttle position can vary from zero to
one, corresponding to no to full throttle.

The second input is the Mach number.

The third input is the altitude in specified length units.

The first output is the thrust in specified force units.

The second output is the fuel flow in specified mass units per second.

Assumptions
and Limitations

The atmosphere is at standard day conditions and an ideal gas.

The Mach number is limited to less than 1.0.

This engine system is for indication purposes only. It is not meant to be used
as a reference model.

References “Aeronautical Vestpocket Handbook,” United Technologies Pratt & Whitney,
August, 1986.

Raymer, D. P., “Aircraft Design: A Conceptual Approach,” AIAA Education
Series, Washington, DC, 1989.

Hill, P. G., and C. R. Peterson, Mechanics and Thermodynamics of Propulsion,
Addison-Wesley Publishing Company, Reading, MA, 1970.

Velocity Conversion

4-231

4Velocity ConversionPurpose Convert from velocity units to desired velocity units

Library Utilities/Unit Conversions

Description The Velocity Conversion block computes the conversion factor from specified
input velocity units to specified output velocity units and applies the
conversion factor to the input signal.

The Velocity Conversion block icon displays the input and output units selected
from the Initial units and the Final units lists.

Dialog Box

Initial units
Specifies the input units.

Final units
Specifies the output units.

The following conversion units are available:

m/s Meters per second

ft/s Feet per second

km/s Kilometers per second

in/s Inches per second

km/h Kilometers per hour

mph Miles per hour

kts Nautical miles per hour

Velocity Conversion

4-232

Inputs and
Outputs

The input is the velocity in initial velocity units.

The output is the velocity in final velocity units.

See Also Acceleration Conversion

Angle Conversion

Angular Acceleration Conversion

Angular Velocity Conversion

Density Conversion

Force Conversion

Length Conversion

Mass Conversion

Pressure Conversion

Temperature Conversion

Von Karman Wind Turbulence Model (Continuous)

4-233

4Von Karman Wind Turbulence Model (Continuous)Purpose Generate continuous wind turbulence with the Von Kármán velocity spectra

Library Environment/Wind

Description The Von Kármán Wind Turbulence Model (Continuous) block uses the Von
Kármán spectral representation to add turbulence to the aerospace model by
passing band-limited white noise through appropriate forming filters. This
block implements the mathematical representation in the Military
Specification MIL-F-8785C and Military Handbook MIL-HDBK-1797.

According to the military references, turbulence is a stochastic process defined
by velocity spectra. For an aircraft flying at a speed V through a “frozen”
turbulence field with a spatial frequency of Ω radians per meter, the circular
frequency ω is calculated by multiplying V by Ω. The following table displays
the component spectra functions:

 MIL-F-8785C MIL-HDBK-1797

Longitudinal

 Φu ω()

 Φp ω()

2σu
2Lu

πV
------------------ 1

1 1.339Lu
ω
V
----()

2
+[]

5 6⁄
---⋅

2σu
2Lu

πV
------------------ 1

1 1.339Lu
ω
V
----()

2
+[]

5 6⁄
---⋅

σw
2

VLw

0.8
πLw
4b

----------- 
 

1
3

1 4bω
πV

----------- 
  2

+

-----------------------------⋅ σw
2

2VLw

0.8
2πLw

4b
--------------- 
 

1
3

1 4bw
πV

------------ 
  2

+

--------------------------------⋅

Von Karman Wind Turbulence Model (Continuous)

4-234

The variable b represents the aircraft wingspan. The variables
represent the turbulence scale lengths. The variables σu, σv, σw represent the
turbulence intensities:

Lateral

Vertical

 MIL-F-8785C MIL-HDBK-1797

Φv ω()

Φr ω()

σv
2Lv
πV

1 8

3
--- 1.339Lv

ω
V
----()

2
+

1 1.339Lv
ω
V
----()

2
+[]

11 6⁄
---⋅

2σv
2Lv

πV

1 8
3
--- 2.678Lv

ω
V
----()

2
+

1 2.678Lv
ω
V
----()

2
+[]

11 6⁄
---⋅

ω
V
---- 
 +−

2

1 3bω
πV

----------- 
  2

+

----------------------------- Φv ω()⋅

ω
V
---- 
 +−

2

1 3bω
πV

----------- 
  2

+

----------------------------- Φv ω()⋅

Φw ω()
σw

2Lw
πV

1 8

3
--- 1.339Lw

ω
V
----()

2
+

1 1.339Lw
ω
V
----()

2
+[]

11 6⁄
--⋅

2σw
2Lw

πV

1 8
3
--- 2.678Lw

ω
V
----()

2
+

1 2.678Lw
ω
V
----()

2
+[]

11 6⁄
--⋅

 Φq ω()
ω
V
---- 
 ±

2

1 4bω
πV

----------- 
  2

+

----------------------------- Φw ω()⋅

ω
V
---- 
 ±

2

1 4bω
πV

----------- 
  2

+

----------------------------- Φw ω()⋅

Lu Lv Lw, ,

Von Karman Wind Turbulence Model (Continuous)

4-235

The spectral density definitions of turbulence angular rates are defined in the
references as three variations, which are displayed in the following table:

The variations affect only the vertical (qg) and lateral (rq) turbulence angular
rates.

Keep in mind that the longitudinal turbulence angular rate spectrum, ,
is a rational function. The rational function is derived from curve-fitting a
complex algebraic function, not the vertical turbulence velocity spectrum,

, multiplied by a scale factor. Because the turbulence angular rate
spectra contribute less to the aircraft gust response than the turbulence
velocity spectra, it may explain the variations in their definitions.

The variations lead to the following combinations of vertical and lateral
turbulence angular rate spectra.

Vertical Lateral

pg
∂wg
∂y

----------= qg
∂wg
∂x

----------= rg
∂vg
∂x
---------–=

pg
∂wg
∂y

----------=

qg
∂wg
∂x

----------=

rg
∂vg
∂x
---------=

pg
∂wg
∂y

----------–= qg
∂wg
∂x

----------–= rg
∂vg
∂x
---------=

Φp ω()

Φw ω()

Φq ω() Φ– r ω()

Φq ω() Φr ω()

Φ– q ω() Φr ω()

Von Karman Wind Turbulence Model (Continuous)

4-236

To generate a signal with the correct characteristics, a unit variance,
band-limited white noise signal is passed through forming filters. The forming
filters are approximations of the Von Kármán velocity spectra which are valid
in a range of normalized frequencies of less than 50 radians. These filters can
be found in both the Military Handbook MIL-HDBK-1797 and the reference by
Ly and Chan.

The following table displays the transfer functions:

 MIL-F-8785C/MIL-HDBK-1797

Longitudinal

Lateral

Hu s()

Hp s()

σu
2
π

Lu
V

--------⋅ 1 0.25
Lu
V

--------s+()

1 1.357
Lu
V

--------s 0.1987
Lu
V

--------()
2
s2

+ +

σw
0.8
V

π
4b()

----------- 
  1 6⁄

Lw
1 3⁄ 1 4b

πV
------- 
  s+ 

 
--

Hv s()

Hr s()

σv
1
π

Lv
V

-------⋅ 1 2.7478
Lv
V

-------s 0.3398
Lv
V

-------()
2
s2

+ +()

1 2.9958
Lv
V

-------s 1.9754
Lv
V

-------()
2
s2 0.1539

Lv
V

-------()
3
s3

+ + +

--

s
V
----+−

1 3b
πV
------- 
  s+ 

 
------------------------------- Hv s()⋅

Von Karman Wind Turbulence Model (Continuous)

4-237

Divided into two distinct regions, the turbulence scale lengths and intensities
are functions of altitude.

Note The Von Kármán filter references refer to the same velocity transfer
functions for both military specifications. The turbulence scale lengths
changes between military references have not impacted the form of the
turbulence velocity transfer functions.

Low-Altitude Model (Altitude < 1000 feet)
According to the military references, the turbulence scale lengths at low
altitudes, where is the altitude in feet, are represented in the following table:

The turbulence intensities are given below, where is the wind speed at
20 feet (6 m). Typically for “light” turbulence the wind speed at 20 feet is 15

Vertical

 MIL-F-8785C MIL-HDBK-1797

 MIL-F-8785C/MIL-HDBK-1797

Hw s()

Hq s()

σw
1
π

Lw
V

---------⋅ 1 2.7478
Lw
V

---------s 0.3398
Lw
V

---------()
2
s2

+ +()

1 2.9958
Lw
V

---------s 1.9754
Lw
V

---------()
2
s2 0.1539

Lw
V

---------()
3
s3

+ + +

--

s
V
----±

1 4b
πV
------- 
  s+ 

 
------------------------------- Hw s()⋅

h

Lw h

Lu Lv
h

0.177 0.000823h+()1.2
--

=

= =

2Lw h

Lu 2Lv
h

0.177 0.000823h+()1.2
--

=

= =

W20

Von Karman Wind Turbulence Model (Continuous)

4-238

knots, for “moderate” turbulence the wind speed is 30 knots, and for “severe”
turbulence the wind speed is 45 knots.

The turbulence axes orientation in this region is defined as follows:

• Longitudinal turbulence velocity, ug, aligned along the horizontal relative
mean wind vector

• Vertical turbulence velocity, wg, aligned with vertical.

At this altitude range, the output of the block is transformed into body
coordinates.

Medium/High Altitudes (Altitude > 2000 feet)
For medium to high altitudes the turbulence scale lengths and intensities are
based on the assumption that the turbulence is isotropic. In the military
references, the scale lengths are represented by the following equations:

The turbulence intensities are determined from a lookup table that provides
the turbulence intensity as a function of altitude and the probability of the
turbulence intensity being exceeded. The relationship of the turbulence
intensities is represented in the following equation.

 MIL-F-8785C MIL-HDBK-1797

σw 0.1W20

σu
σw

σv
σw
------- 1

0.177 0.000823h+()0.4
--

=

= =

Lu Lv Lw 2500= = = ft Lu 2Lv 2Lw 2500= = = ft

σu σv σw= =

Von Karman Wind Turbulence Model (Continuous)

4-239

The turbulence axes orientation in this region is defined as being aligned with
the body coordinates:

Between Low and Medium/High Altitudes (1000 feet < Altitude < 2000
feet)
At altitudes between 1000 feet and 2000 feet, the turbulence velocities and
turbulence angular rates are determined by linearly interpolating between the
value from the low altitude model at 1000 feet transformed from mean
horizontal wind coordinates to body coordinates and the value from the high
altitude model at 2000 feet in body coordinates.

Von Karman Wind Turbulence Model (Continuous)

4-240

Dialog Box

Units
Define the units of wind speed due to the turbulence.

Wind Velocity Altitude Air Speed

Metric (MKS) Meters/second Meters Meters/second

English
(Velocity in
ft/s)

Feet/second Feet Feet/second

English
(Velocity in
kts)

Knots Feet Knots

Von Karman Wind Turbulence Model (Continuous)

4-241

Specification
Define which military reference to use. This affects the application of
turbulence scale lengths in the lateral and vertical directions

Model type
Select the wind turbulence model to use:

Model Description

Continuous Von Kármán (+q -r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Von Kármán (+q +r) Use continuous representation of Von
Kármán velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Von Kármán (-q +r) Use continuous representation of Von
Kármán velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Continuous Dryden (+q -r) Use continuous representation of
Dryden velocity spectra with positive
vertical and negative lateral angular
rates spectra.

Continuous Dryden (+q +r) Use continuous representation of
Dryden velocity spectra with positive
vertical and lateral angular rates
spectra.

Continuous Dryden (-q +r) Use continuous representation of
Dryden velocity spectra with negative
vertical and positive lateral angular
rates spectra.

Von Karman Wind Turbulence Model (Continuous)

4-242

The Continuous Von Kármán selections conform to the transfer function
descriptions.

Wind speed at 6 m defines the low altitude intensity
The measured wind speed at a height of 20 feet (6 meters) provides the
intensity for the low-altitude turbulence model.

Wind direction at 6 m (degrees clockwise from north)
The measured wind direction at a height of 20 feet (6 meters) is an angle to
aid in transforming the low-altitude turbulence model into a body
coordinates.

Probability of exceedance of high-altitude intensity
Above 2000 feet, the turbulence intensity is determined from a lookup table
that gives the turbulence intensity as a function of altitude and the
probability of the turbulence intensity’s being exceeded.

Scale length at medium/high altitudes
The turbulence scale length above 2000 feet is assumed constant, and from
the military references, a figure of 1750 feet is recommended for the
longitudinal turbulence scale length of the Dryden spectra.

Discrete Dryden (+q -r) Use discrete representation of Dryden
velocity spectra with positive vertical
and negative lateral angular rates
spectra.

Discrete Dryden (+q +r) Use discrete representation of Dryden
velocity spectra with positive vertical
and lateral angular rates spectra.

Discrete Dryden (-q +r) Use discrete representation of Dryden
velocity spectra with negative vertical
and positive lateral angular rates
spectra.

Model Description

Von Karman Wind Turbulence Model (Continuous)

4-243

Note An alternate scale length value changes the power spectral density
asymptote and gust load.

Wingspan
The wingspan is required in the calculation of the turbulence on the
angular rates.

Band-limited noise sample time (seconds)
The sample time at which the unit variance white noise signal is generated.

Noise seeds
There are four random numbers required to generate the turbulence
signals, one for each of the three velocity components and one for the roll
rate. The turbulences on the pitch and yaw angular rates are based on
further shaping of the outputs from the shaping filters for the vertical and
lateral velocities.

Turbulence on
Selecting the check box generates the turbulence signals.

Inputs and
Outputs

The first input is the altitude in units selected.

The second input is the aircraft speed in units selected.

The third input is a direction cosine matrix.

The first output is a three-element signal containing the turbulence velocities,
in the selected units.

The second output is a three-element signal containing the turbulence angular
rates, in radians per second.

Assumptions
and Limitations

The “frozen” turbulence field assumption is valid for the cases of mean-wind
velocity and the root-mean-square turbulence velocity, or intensity, are small
relative to the aircraft’s ground speed.

Von Karman Wind Turbulence Model (Continuous)

4-244

The turbulence model describes an average of all conditions for clear air
turbulence because the following factors are not incorporated into the model:

• Terrain roughness

• Lapse rate

• Wind shears

• Mean wind magnitude

• Other meteorological factions (except altitude)

References U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.

U.S. Military Specification MIL-F-8785C, 5 November 1980.

Chalk, C., Neal, P., Harris, T., Pritchard, F., Woodcock, R., “Background
Information and User Guide for MIL-F-8785B(ASG), ‘Military
Specification-Flying Qualities of Piloted Airplanes’,” AD869856, Cornell
Aeronautical Laboratory, August 1969.

Hoblit, F., “Gust Loads on Aircraft: Concepts and Applications,” AIAA
Education Series, 1988.

Ly, U., Chan, Y., “Time-Domain Computation of Aircraft Gust Covariance
Matrices,” AIAA Paper 80-1615, Atmospheric Flight Mechanics Conference,
Danvers, MA., August 11-13, 1980.

McRuer, D., Ashkenas, I., Graham, D., Aircraft Dynamics and Automatic
Control, Princeton University Press, July 1990.

Moorhouse, D., Woodcock, R., “Background Information and User Guide for
MIL-F-8785C, ‘Military Specification-Flying Qualities of Piloted Airplanes’,”
ADA119421, Flight Dynamic Laboratory, July 1982.

McFarland, R., “A Standard Kinematic Model for Flight Simulation at
NASA-Ames,” NASA CR-2497, Computer Sciences Corporation, January 1975.

Tatom, F., Smith, R., Fichtl, G., “Simulation of Atmospheric Turbulent Gusts
and Gust Gradients,” AIAA Paper 81-0300, Aerospace Sciences Meeting, St.
Louis, MO., January 12-15, 1981.

Yeager, J., “Implementation and Testing of Turbulence Models for the
F18-HARV Simulation,” NASA CR-1998-206937, Lockheed Martin
Engineering & Sciences, March 1998.

Von Karman Wind Turbulence Model (Continuous)

4-245

See Also Dryden Wind Turbulence Model (Continuous)

Dryden Wind Turbulence Model (Discrete)

Discrete Wind Gust Model

Wind Shear Model

WGS84 Gravity Model

4-246

4WGS84 Gravity ModelPurpose Implement the 1984 World Geodetic System (WGS84) representation of Earth’s
gravity

Library Environment/Gravity

Description The WGS84 Gravity Model block implements the mathematical representation
of the geocentric equipotential ellipsoid of the World Geodetic System
(WGS84). The block output is the Earth’s gravity at a specific location. Gravity
precision is controlled via the Type of gravity model parameter.

The WGS84 Gravity Model block icon displays the input and output units
selected from the Units list.

Dialog Box

Type of gravity model
Specifies the method to calculate gravity:

-WGS84 Taylor Series

-WGS84 Close Approximation

-WGS84 Exact

WGS84 Gravity Model

4-247

Units
Specifies the input and output units:

Exclude Earth’s atmosphere
Select for the value for the Earth’s gravitational field to exclude the mass
of the atmosphere.

Clear for the value for the Earth’s gravitational field to include the mass of
the atmosphere.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Precessing reference frame
When selected, the angular velocity of the Earth is calculated using the
International Astronomical Union (IAU) value of the Earth’s angular
velocity and the precession rate in right ascension. In order to obtain the
precession rate in right ascension, Julian Centuries from Epoch J2000.0 is
calculated using the dialog parameters of Month, Day, and Year.

If cleared, the angular velocity of the Earth used is the value of the
standard Earth rotating at a constant angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Month
Specifies the month used to calculate Julian Centuries from Epoch
J2000.0.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Day
Specifies the day used to calculate Julian Centuries from Epoch J2000.0.

Height Gravity

Metric (MKS) Meters Meters per second squared

English Feet Feet per second squared

WGS84 Gravity Model

4-248

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

Year
Specifies the year used to calculate Julian Centuries from Epoch J2000.0.
The year must be 2000 or greater.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact and only when Precessing reference
frame is selected.

No centrifugal effects
When selected, calculated gravity is based on pure attraction resulting
from the normal gravitational potential.

If cleared, calculated gravity includes the centrifugal force resulting from
the Earth’s angular velocity.

This option is only available with Type of gravity model WGS84 Close
Approximation or WGS84 Exact.

Action for out of range input
Specify if out of range input invokes a warning, error, or no action.

Inputs and
Outputs

The first input is a scalar containing the altitude in specified length units.

The second input is a scalar containing the latitude in degrees.

The third input is a scalar containing the longitude in degrees. This input is
only available with Type of Gravity Model WGS84 Close Approximation or
WGS84 Exact.

The output is a scalar value of gravity with the direction normal to the Earth’s
surface.

WGS84 Gravity Model

4-249

Assumptions
and Limitations

The WGS84 gravity calculations are based on the assumption of a geocentric
equipotential ellipsoid of revolution. Since the gravity potential is assumed to
be the same everywhere on the ellipsoid, there must be a specific theoretical
gravity potential that can be uniquely determined from the four independent
constants defining the ellipsoid.

Use of the WGS84 Taylor Series model should be limited to low geodetic
heights. It is sufficient near the surface when submicrogal precision is not
necessary. At medium and high geodetic heights, it is less accurate.

Use of the WGS84 Close Approximation model should be limited to a geodetic
height of 20000.0 m (approximately 65620.0 feet). Below this height, it gives
results with submicrogal precision.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example of this
block.

References [1] NIMA TR8350.2: “Department of Defense World Geodetic System 1984, Its
Definition and Relationship with Local Geodetic Systems.”

Wind Shear Model

4-250

4Wind Shear ModelPurpose Calculate wind shear conditions

Library Environment/Wind

Description The Wind Shear Model block adds wind shear to the aerospace model. This
implementation is based on the mathematical representation in the Military
Specification MIL-F-8785C [1]. The magnitude of the wind shear is given by
the following equation for the mean wind profile as a function of altitude and
the measured wind speed at 20 feet (6 m) above the ground.

where uw is the mean wind speed, W20 is the measured wind speed at an
altitude of 20 feet, is the altitude, and is a constant equal to 0.15 feet for
Category C flight phases and 2.0 feet for all other flight phases. Category C
flight phases are defined in reference [1] to be terminal flight phases, which
include takeoff, approach, and landing.

The resultant mean wind speed in the Earth-fixed axis frame is changed to
body-fixed axis coordinates by multiplying by the direction cosine matrix
(DCM) input to the block. The block output is the mean wind speed in the
body-fixed axis.

uw W20

h
z0
----- 
 ln

20
z0
------ 
 ln

------------------ 3ft h 1000ft< <,=

h z0

Wind Shear Model

4-251

Dialog Box

Units

Define the units of wind shear.

Flight phase
Select flight phase:

- Category C Terminal Flight Phases

- Other

Wind speed at 6 m (20 feet) altitude (m/s, f/s, or knots)
The measured wind speed at an altitude of 20 feet (6 m) above the ground.

Wind Altitude

Metric (MKS) Meters/second Meters

English
(Velocity in
ft/s)

Feet/second Feet

English
(Velocity in
kts)

Knots Feet

Wind Shear Model

4-252

Wind direction at 6 m (20 feet) altitude (degrees clockwise from north)
The direction of the wind at an altitude of 20 feet (6 m), measured in
degrees clockwise from the direction of the Earth x-axis (north). The wind
direction is defined as the direction from which the wind is coming.

Inputs and
Outputs

The first input is the altitude in units selected.

The second input is a 3-by-3 direction cosine matrix.

The output is a 3-by-1 vector of the mean wind speed in the body axes frame,
in the selected units.

Examples See the Airframe subsystem in the aeroblk_HL20 model for an example of this
block.

References U.S. Military Specification MIL-F-8785C, 5 November 1980.

See Also Discrete Wind Gust Model

Dryden Wind Turbulence Model (Continuous)

World Magnetic Model 2000

4-253

4World Magnetic Model 2000Purpose Calculate the Earth’s magnetic field at a specific location and time using the
World Magnetic Model 2000 (WMM2000) block.

Library Environment/Gravity

Description The WMM2000 block implements the mathematical representation of the
National Imagery and Mapping Agency (NIMA) World Magnetic Model 2000.
The WMM2000 block calculates the Earth’s magnetic field vector, horizontal
intensity, declination, inclination, and total intensity at a specified location
and time.

Dialog Box

World Magnetic Model 2000

4-254

Units
Specifies the input and output units:

Input decimal year
When selected, the decimal year is an input for the World Magnetic Model
2000 block. Otherwise, a date must be specified using the dialog
parameters of Month, Day, and Year.

Month
Specifies the month used to calculate decimal year.

Day
Specifies the day used to calculate decimal year.

Year
Specifies the year used to calculate decimal year.

Action for out of range input
Specify if out of range input invokes a warning, error or no action.

Output horizontal intensity
When selected, the horizontal intensity is output.

Output declination
When selected, the declination, the angle between true north and the
magnetic field vector (positive eastwards), is output.

Output inclination
When selected, the inclination, the angle between the horizontal plane and
the magnetic field vector (positive downwards), is output.

Output total intensity
When selected, the total intensity is output.

Inputs and
Outputs

The first input is the height, in selected units.

Height Magnetic Field Horizontal Intensity Total Intensity

Metric (MKS) Meters Nanotesla Nanotesla Nanotesla

English Feet Nanogauss Nanogauss Nanogauss

World Magnetic Model 2000

4-255

The second input is the latitude in degrees.

The third input is the longitude in degrees.

The fourth optional input is the decimal year.

The first output is the magnetic field vector in selected units.

The second optional output is the horizontal intensity in selected units.

The third optional output is the declination in degrees.

The fourth optional output is the inclination in degrees.

The fifth optional output is the total intensity in selected units.

Limitations The WMM2000 specification produces data that is reliable five years after the
epoch of the model, which is January 1, 2000.

The internal calculation of decimal year does not take into account local time
or leap seconds.

The WMM2000 specification describes only the long-wavelength spatial
magnetic fluctuations due to the Earth's core. Intermediate and
short-wavelength fluctuations, contributed from the crustal field (the mantle
and crust), are not included. Also, the substantial fluctuations of the
geomagnetic field, which occur constantly during magnetic storms and almost
constantly in the disturbance field (auroral zones), are not included.

References Macmillian, S. and J. M. Quinn, 2000. The Derivation of the World Magnetic
Model 2000, British Geological Survey Technical Report WM/00/17R.

http://www.ngdc.noaa.gov/seg/WMM/DoDWMM.shtml

World Magnetic Model 2000

4-256

A
Aerospace Units

A Aerospace Units

A-2

The main blocks of the Aerospace Blockset support standard measurement
systems. The Unit Conversion blocks support all units listed in the following
table.

Quantity Metric (MKS) English

Acceleration meters/second2

(m/s2),
kilometers/second2
(km/s2), kilometers/hour
(km/h), kilometers/second
(km/s)

inches/second2 (in/s2),
feet/second2 (ft/s2),
miles/hour (mph),
miles/second (mps)

Angle radian (rad), degree
(deg), revolution

radian (rad), degree
(deg), revolution

Angular
acceleration

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute (rpm),
revolutions/second (rps)

radians/second2 (rad/s2),
degrees/second2 (deg/s2),
revolutions/minute
(rpm), revolutions/second
(rps)

Angular velocity radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

radians/second (rad/s),
degrees/second (deg/s),
revolutions/minute (rpm)

Density kilogram/meter3 (kg/m3) pound mass/foot3
(lbm/ft3), slug/foot3
(slug/ft3), pound
mass/inch3 (lbm/in3)

Force Newton (N) pound (lb)

Inertia kilogram-meter2 (kg-m2) slug-foot2 (slug-ft2)

Length meter (m) inch (in), foot (ft), mile
(mi), nautical mile (nm)

Mass kilogram (kg) slug (slug), pound mass
(lbm)

A-3

Pressure Pascal pound/inch2 (psi),
pound/foot2 (psf),
atmosphere (atm)

Temperature Kelvin, Celsius Fahrenheit, Rankine

Velocity meters/second (m/s),
kilometers/second (km/s),
kilometers/hour (km/h)

inches/second (in/sec),
feet/second (ft/sec),
miles/hour (mph), knots

Quantity Metric (MKS) English

A Aerospace Units

A-4

Index-1

Index

A
Acceleration Conversion block 4-74
Actuators library 2-2
Adjoint of 3x3 Matrix block 4-76
Aerodynamic Forces and Moments block 4-78
Aerodynamics library 2-2
Angle Conversion block 4-80
Angular Acceleration Conversion block 4-82
Angular Velocity Conversion block 4-84
Animation library 2-2

C
Calculate Range block 4-86
COESA Atmosphere Model block 4-87
Create 3x3 Matrix block 4-90
creating an aerospace model

basic steps 2-5
Custom Variable Mass 3DoF (Body Axes) block

4-92
Custom Variable Mass 6DoF (Euler Angles) block

4-97
Custom Variable Mass 6DoF (Quaternion) block

4-103

D
Density Conversion block 4-108
Determinant of 3x3 Matrix block 4-110
Direction Cosine Matrix to Euler Angles block

4-111
Direction Cosine Matrix to Quaternions block

4-113
Discrete Wind Gust Model block 4-115
Dryden Wind Turbulence Model (Continuous)

block 4-118

Dryden Wind Turbulence Model (Discrete) block
4-131

Dynamic Pressure block 4-143

E
Environment library 2-2

Atmosphere sublibrary 2-2
Gravity sublibrary 2-3
Wind sublibrary 2-3

Equations of Motion library 2-3
3DoF sublibrary 2-3
6DoF sublibrary 2-3

Estimate Center of Gravity block 4-144
Estimate Inertia Tensor block 4-146
Euler Angles to Direction Cosine Matrix block

4-148
Euler Angles to Quaternions block 4-150

F
Flight Parameters library 2-3
Force Conversion block 4-152

G
Gain Scheduled Lead-Lag block 4-154
GNC Library

Control sublibrary 2-3
Guidance sublibrary 2-3

H
Horizontal Wind Model block 4-155

Index

Index-2

I
Ideal Airspeed Correction block 4-157
Incidence & Airspeed block 4-160
Incidence, Sideslip & Airspeed block 4-161
Interpolate Matrix(x) block 4-163
Interpolate Matrix(x,y) block 4-165
Interpolate Matrix(x,y,z) block 4-167
Invert 3x3 Matrix block 4-170
ISA Atmosphere Model block 4-171

L
Lapse Rate Model block 4-172
Length Conversion block 4-176

M
Mach Number block 4-178
Mass Conversion block 4-179
Mass Properties library 2-4
MATLAB

opening demos
using the command line 1-9
using the Start button 1-9

M-files
running simulations from 2-16

missile guidance system 3-2
Moments about CG due to Forces block 4-181

N
Non-Standard Day 210C block 4-182
Non-Standard Day 310 block 4-186

O
Controllers

1D Controller [A(v),B(v),C(v),D(v)] block 4-12
1D Controller [A(v),B(v),C(v),D(v)] block 4-12
1D Controller Blend u=(1-L).K1.y+L.K2.y block

4-15
1D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

4-18
1D Self-Conditioned [A(v),B(v),C(v),D(v)] block

4-21

P
parameters

tuning 2-16
Pressure Altitude block 4-190
Pressure Conversion block 4-192
Propulsion library 2-4

Q
Quaternions to Direction Cosine Matrix block

4-194
Quaternions to Euler Angles block 4-196

R
Relative Ratio block 4-198

S
Second Order Linear Actuator block 4-200
Second Order Nonlinear Actuator block 4-201
Self-Conditioned [A,B,C,D] block 4-203
Simple Variable Mass 3DoF (Body Axes) block

4-207
Simple Variable Mass 6DoF (Euler Angles) block

4-213

Index

Index-3

Simple Variable Mass 6DoF (Quaternion) block
4-219

simulations
running from M-file 2-16

Simulink
block libraries 1-4
modifying models 1-16
opening demos

using the Help browser 1-8
opening the Aerospace Blockset 1-4
running demos 1-13
using the Simulink Library Browser in

Microsoft Windows 1-4
using the Simulink Library window in UNIX

1-7
SinCos block 4-224
6DoF (Euler Angles) block 4-63
6DoF Animation block 4-61
Symmetric Inertia Tensor block 4-225

T
Temperature Conversion block 4-226
3x3 Cross Product block 4-60
3D Controller [A(v),B(v),C(v),D(v)] block 4-40
3D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

4-44
3D Self-Conditioned [A(v),B(v),C(v),D(v)] block

4-48
3DoF (Body Axes) block 4-55
3DoF Animation block 4-52
tuning parameters 2-16
Turbofan Engine System block 4-228
2D Controller [A(v),B(v),C(v),D(v)] block 4-25
2D Controller Blend block 4-28
2D Observer Form [A(v),B(v),C(v),F(v),H(v)] block

4-32

2D Self-Conditioned [A(v),B(v),C(v),D(v)] block
4-36

U
Utilities library 2-4

Axes Transformation sublibrary 2-4
Math Operations sublibrary 2-4
Unit Conversions sublibrary 2-4

V
Velocity Conversion block 4-231
Virtual Reality Toolbox 1-3
Von Kármán Wind Turbulence Model

(Continuous) block 4-233

W
WGS84 Gravity Model block 4-246
Wind Shear Model block 4-250
World Magnetic Model 2000 block 4-253

Index

Index-4

	Getting Started
	What Is the Aerospace Blockset?
	What’s in This Chapter

	Required Products
	Opening the Aerospace Blockset in Simulink
	Opening the Aerospace Blockset on Windows Platforms
	Opening the Aerospace Blockset on UNIX Platforms

	Running a Demo Model
	What This Demo Illustrates
	Opening the Model
	Running the Demo
	Modifying the Model

	Using the Aerospace Blockset
	Introducing the Aerospace Blockset Libraries
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Equations of Motion Library
	Flight Parameters Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Creating Aerospace Models
	Building a Simple Actuator System
	Building the Model
	Running the Simulation

	Case Studies
	Missile Guidance System
	Missile Guidance System Model
	Modeling Airframe Dynamics
	Modeling a Classical Three-Loop Autopilot
	Modeling the Homing Guidance Loop
	Simulating the Missile Guidance System
	Extending the Model
	References

	NASA HL-20 Lifting Body Airframe
	NASA HL-20 Lifting Body
	The HL-20 Airframe Model
	References

	Ideal Airspeed Correction
	Airspeed Correction Models
	Measuring Airspeed
	Modeling Airspeed Correction
	Simulating Airspeed Correction

	1903 Wright Flyer Model
	Wright Flyer Model
	Airframe Subsystem
	Environment Subsystem
	Pilot Subsystem
	Running the Simulation
	References

	Block Reference
	Blocks — Categorical List
	Actuators Library
	Aerodynamics Library
	Animation Library
	Environment Library
	Flight Parameters Library
	Equations of Motion Library
	GNC Library
	Mass Properties Library
	Propulsion Library
	Utilities Library

	Blocks — Alphabetical List

	Aerospace Units
	Index

